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ABSTRACT

A Machine Learning (ML)-based surrogate modeling framework is developed to predict the hetero-
geneous deformation behavior of dual phase microstructures. The deformation is first simulated
using a dislocation density-based J2 plasticity Finite Element (FE) model, whose results form the
basis for surrogate model training and validation. Long Short Term Memory (LSTM)-based ML
models, with different architectures, are employed to predict the spatio-temporal evolution of three
output variables: effective strain, von Mises effective stress, and the stress triaxiality ratio. Two
metrics, the mean average error (MAE) and the coefficient of determination, R2, are used to assess
the performance of the models and different architectures. Based on our analysis, the LSTM model
is generally found to predict the spatio-temporal deformation fields with reasonable accuracy, even
for untrained microstructures with varying microstructural attributes and random instantiations. The
LSTM model is also used to predict aggregate properties, such as the stress-strain response and the
strain partitioning in the dual phase microstructures.

Keywords Surrogate models ·Machine Learning (ML) · Long-Short Term Memory (LSTM) · dual
phase microstructures · plastic deformation

1 Introduction

Finite Element (FE) modeling frameworks have been used extensively to simulate the spatio-temporal deformation (and
evolution) of microstructures. Such frameworks are based on the development of constitutive equations to represent the
underlying deformation mechanisms. These frameworks have generally been developed, with various homogenization
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approaches (if required), to study the deformation at the level of components [1, 2], microstructures [3, 4], and nano-
scale structures [5, 6, 7]. The FE frameworks often employ physically-representative Crystal Plasticity (CP) constitutive
equations [3, 8, 9] and phase field modeling approaches [10, 11, 12, 13] to study the microstructure evolution during
deformation and correlate them with the overall mechanical response. Additionally, Fast-Fourier Transform (FFT)
based spectral solvers [14, 15, 16] have also been developed to study the deformation of microstructure ensembles.
These predictions are also compared with relevant experimental measurements [17, 18, 4], where available. These
spatially resolved deformation simulations are generally considered to be the state-of-the-art and provide high fidelity
information regarding local deformation characteristics. They have become the tool of choice for studying the effect of
microstructure on the deformation behavior. However, these methods are associated with large computational costs,
which may act as a deterrent for performing large scale simulations for advanced computational materials design
problems.

In recent years, surrogate modeling techniques are being explored as an alternative can significantly reduce the
computational times, while maintaining the high fidelity of microstructural information obtained from FE simulations.
These approaches generally employ a combination of data informatics, image-based modeling and neural networks
to predict microstructure evolution during deformation [19, 20, 21]. This is accomplished by training the surrogate
models to the spatio-temporal data obtained from FE or FFT simulations [22, 23, 24, 25, 26, 27, 28]. In some cases,
the FE simulations may even be bypassed by directly training the surrogate models to the experimentally obtained
microstructure evolution data [29]. Further, surrogate constitutive model forms have also been trained using data-
based approaches to the "original" model response [30, 31, 32] and implemented in FE frameworks to obtain reduced
computation times [31, 33]. Such surrogate models broadly fall in the domain of machine learning techniques.

Machine Learning (ML) is an emerging research field and has been widely adopted in recent years due to its ability to
predict properties, relationships and inferences from different kinds of data, with relatively lower computational costs
[34]. While research in this field has increased significantly in the recent years [35], we mention a few examples of the
application of ML techniques specific to mechanics and microstructure evolution problems in the following (this being
the central theme of our work). Mangal and Holm [25] used ML to predict the formation of stress hot spots in face
centered cubic materials. They implemented a random forest algorithm, which was used for classification of grains
as stress hot spots, where localized deformation may occur. The algorithm also successfully captured the effect of
changing material and texture parameters on the stress hot spots. Muhammad et al. [29] implemented an Artificial
Neural Network (ANN) model to predict the local strain distribution, fracture, and evolution of plastic anisotropy in
additively manufactured alloys. They were able to predict the location, intensity and the shape of shear bands before
failure with reasonable accuracy. An image-based Convolutional Neural Network (CNN) model was developed by
Beniwal et al. [21] for predictive modeling of structure-property linkages. In their work, the reduced order model
has the ability to predict stress localization simply from the microstructure image. Machine learning was also used to
homogenize arbitrary microstructures and obtain the corresponding nonlinear, history-dependent constitutive response
[33]. A Long-Short Term Memory (LSTM) based RNN network has the capability of remembering states over time and
thus capable of modeling dynamic systems [36]. Pandey et al. [27] developed a LSTM-based framework for predicting
the texture evolution under tensile loading of polycrystalline materials. They used a first-order approximation by taking
the effect of only nearest neighbor interactions on each material point. Although their model did not account for any
long range interactions, it produced results with 99% accuracy. Moreover, the prediction capability of their model for
different microstructures was not explored exhaustively. Several other ML-based studies for predicting deformation
have been published in the recent years [37, 38, 39, 40, 41].

Most of the above mentioned surrogate modeling studies generally focused on predicting the deformation of single phase
microstructures. Multi-phase microstructures are generally associated with heterogeneous deformation characteristics
and partitioning of stress and strain in different regions of the microstructure [17]. This poses a challenge for ML-based
surrogate modeling approaches, as the evolution stress and strain distributions is not only history-dependent, but also
dependent on the spatial heterogeneity of the underlying microstructures. Further, while some studies have indeed
developed ML models for multi-phase microstructures [21, 42], their predictive capabilities as a function of deformation
history has not been clearly demonstrated; majority of the studies are only used predict the contours at the end of
deformation.

In the present work, we focus on predicting the history-dependent microstructure evolution of dual phase microstructures
during deformation using surrogate ML models. Dual phase microstructures, comprising of a hard martensite phase
and a soft ferrite phase (representative of the martensite and ferrite phases, respectively), are first simulated using
a dislocation density-based, J2 plasticity FE model. The output from the FE model is used to generate the data set
for surrogate model training and also serves as the ground truth data. A systematic study of different LSTM-based
surrogate models, and trained with the same FE data set, is performed for predicting the deformed microstructure
evolution. Specifically, effective strain, von Mises effective stress, and Stress Triaxiality ratio (ST) are chosen as the
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output variables of the models. The model with the least error in predictions is then used for predicting the spatial
deformation contours, aggregate stress-strain response as well the strain partitioning for untrained microstructures.

2 Finite Element (FE) Framework and Data Set Generation

2.1 Microstructure Instantiation

We have used an in-house MATLAB code to instantiate 2D dual phase microstructures. This code employs a weighted
Voronoi tessellation algorithm for random positioning of grain centers within the simulation domain, based on pre-
assigned grain size distributions. This algorithm randomly instantiates grain seed locations, such that the projected
grain radii do not overlap. The grain interfaces are then defined based on the proximity of a point to a grain seed, thus
assigning points in the simulation domain to different grains. Details of the microstructure instantiation algorithm
are given in Ref. [43]. The grain size distributions and phase fractions of the respective phases used in this work are
based on experimental characterization of a Dual Phase (DP) steel microstructure, comprised of soft ferrite and hard
martensite phases. A log normal grain size distribution has been assumed for both phases. Figure 1 shows the phase
map and the grain map of a representative microstructure generated using this algorithm. The Trelis meshing software
[44] is then used to mesh the 2D microstructure with voxel-based finite elements. An element size of 0.25µm is used to
mesh the simulation domain of 100× 100µm2.

Figure 1: (a) Phase map, and (b) grain map of a representative dual phase microstructure. In the phase map, blue color
corresponds to the ferrite phase with higher volume fraction, while yellow color corresponds to the martensite phase
with lower volume fraction. Note that the colors in the grain map are random and only used to demarcate one grain
from another.

2.2 Constitutive Model

We have used a J2 plasticity constitutive modeling framework [45] for performing the Finite Element (FE) simulations.
While this is not a novel feature of the present work, we briefly mention the constitutive equations here for completeness.
Detailed description of the constitutive model developed for Dual Phase (DP) steels and analysis of the model results
are given elsewhere [46]. This constitutive framework uses a finite deformation, dislocation density based model and
has been adapted from a crystal plasticity framework, previously used to model the deformation behavior of various
metallic systems [18, 4, 47].

In this framework, the deformation gradient is multiplicatively decomposed into the elastic and plastic parts:

F = F e · F p (1)

where, F p relates the reference configuration to an intermediate configuration and accounts for shear due to plastic
deformation, while F e relates the intermediate configuration to the current, deformed deformation and accounts for the
elastic deformation and rigid body rotation.
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The plastic deformation gradient is related to the velocity gradient as: Ḟ p = Lp · F p, where the velocity gradient, Lp,
is given by:

Lp =

√
3

2
˙̄εpNp (2)

Here, ˙̄εp is the effective plastic strain rate and Np is the direction of the plastic flow, based on the following relation:

Np =

√
3

2

S

σ̄
(3)

where, S is the deviatoric stress tensor and σ̄ is the von Mises effective stress. The effective plastic strain rate is
modeled using a Kocks-type, thermally activated flow rule [48]:

˙̄εp = ˙̄εpo exp

(
−∆Fg
kT

(
1−

(
σ̄ − Sa
St

)p)q)
; σ̄ > Sa (4)

where, ∆Fg is the activation energy for dislocation glide, Sa is the athermal slip resistance, St is the thermal slip
resistance, and p and q are parameters used to model the shape of the activation enthalpy curve. The athermal slip
resistance, Sa, is given by:

Sa =
hp√
d

+Gb
√
qpρ (5)

where, hp is the Hall-Petch hardening constant, d is the grain size, G is the shear modulus, b is the Burgers vector, qp is
the dislocation barrier strength and ρ is the total dislocation density. The thermal slip resistance St is given by

St = τ0 + δτ (6)

where, τ0 accounts for the solute solution strengthening and lattice slip resistance while δτ is the strengthening due to
carbon atoms in solution and carbide precipitation in martensite. These contributions are expressed as [1]:

tau0 = 77 + 80%Mn+ 750%P + 60%Si+ 80%Cu+ 45%Ni+ 60%Cr + 11% (7)

δτ = 3065%C − 161MPa (8)
The elemental concentrations in weight percent are taken from [2] or both phases, whereas %C for ferrite and martensite
is obtained from the phase diagram as 0.056% and 0.378% respectively. The values of these parameters are given
in [49]. Martensitic structures are known to derive their strength from multiple factors like boundary strengthening
(martensite colony size) , solute solution strengthening, dislocation strengthening, Hall-Petch strengthening and carbide
strengthening [7]. Ferrite on the other primarily undergoes dislocation, solute and Hall-Petch strengthening. These
common strengthening mechanisms are appropriately accounted for through equations (6) and (7) for both the phases.
Equation (8) represents strengthening due to carbon in solution for ferrite, while for martensite it additionally includes
carbide precipitation. ρ is defined as the sum of mobile, ρM , and immobile, ρI , dislocation densities, i.e.,

ρ = ρM + ρI (9)

Note that the FE model keeps track of the individual grain sizes, which contribute to grain size-dependent heterogeneous
deformation, in addition to the heterogeneity due to the two phases.

The evolution of the dislocation densities depends on the equivalent plastic strain rate as [4, 45]:

˙ρM =
kmul
b

√
ρ| ˙̄εp| − 2Rc

b
ρM | ˙̄εp| −

1

bλ
| ˙̄εp| (10)

ρ̇I =
1

bλ
| ˙̄εp| − kdynρI | ˙̄εp| (11)

where, kmul is the dislocation multiplication rate constant, Rc is the critical capture radius, λ = 1
β
√
ρ is effective

mean free path of dislocations, and β is a constant associated with dislocation trapping. The first term in equation
(10) represents the multiplication of mobile dislocations at existing dislocations, while the second term represents the
mutual annihilation of dislocation dipoles, and the third term represents the trapping of mobile dislocations at barriers.
kdyn is the material constant associated with dynamic recovery of immobile dislocations due to thermally activated
processes. The first term in equation (11) represents the rate at which mobile dislocations are trapped in barriers and
become immobile, while the second term represents the rate at which the immobile dislocations are annihilated due to
dynamic recovery.

The constitutive model has been implemented as a user-defined material model and interfaced with the open source
finite element code, MOOSE [50]. Further details of the constitutive model, along with model parameters, are presented
elsewhere [46].
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2.3 Loading and Boundary Conditions

A mesh size of 0.25µm is used with a simulation domain size of 100× 100µm2. The simulation domain has 160,000
finite elements, with linear interpolation. A generalized plane strain assumption has been used in these essentially
2D simulations. The bottom face of the simulation domain is constrained in the y-direction, while the left face is
constrained in the x-direction to resemble an axisymmetric model. The bottom left corner node, is fully constrained
to prevent rigid body motion. Displacement-controlled tensile loading is applied on the right face along the positive
x-direction at a nominal strain rate of 5× 10−3s−1.

2.4 FE Model Results

Representative FE simulated contours of the effective strain, ε̄, effective stress, σ̄, and Stress Triaxiality ratio (ST) after
a nominal strain of 0.15 are shown in figure 2 (a), (b), and (c), respectively. The corresponding simulated stress-strain
response is shown in figure 2 (d). It can be seen that the majority of the strain is localized in the softer ferrite phase
(with higher volume fraction), while the stress is localized in the hard martensite phase (with lower volume fraction).
On the other hand, the stresses are significantly higher in the hard martensite phase. These regions may be interpreted,
with the help of the phase map (in figure 1(a)), in the corresponding effective strain and effective stress contours. As
is evident, highly heterogeneous and partitioned deformation fields develop in the microstructure. The ST contour
shows that there are regions of very high stress triaxiality ratio (up to 3) in the vicinity of the hard martensite phases.
Specifically, the triaxiality hot spots are more predominant when two grains of the hard martensite phase are in vicinity
of each other. These regions may be expected to be failure initiation points in the microstructure. This is discussed in
more detail in section 4.5.

2.5 Data Extraction from FE Results

The simulation results of the FE model are output to an EXODUS data file [51]. We have used the Python-based Sandia
Engineering Analysis Code Access System (SEACAS) package [52] to extract data from the binary Exodus file to an
ASCII-based csv file, which are then used as inputs for the ML models. The overall integration of the FE framework
with the ML-based surrogate model via the SEACAS Exodus Python library is shown schematically in Figure 3. Details
of the surrogate modeling framework are described next.

3 Machine Learning (ML)-based Surrogate Modeling Framework

3.1 Long Short-Term Memory (LSTM) Network

Long Short-Term Memory (LSTM) networks are a class of Recurrent Neural Networks (RNN). LSTMs were proposed
by Hochreiter and Schmidhuber [36] with the purpose of transmitting useful information multiple time steps into the
future. The LSTM architecture consists of memory cells, which are recurrently connected sub-nets. The memory cell
functions with the help of three gates: (a) keep gate, (b) write gate, and (c) output gate.

The memory cells have a keep gate that determines the amount of the previous memory that is useful and will be stored
for future use. Once the LSTM knows which information is useful, the information is written into the memory state by
the write gate. At the final step, the LSTM unit provides it’s output. The structure of the output gate is similar to the
write gate. All these gates use a combination of different activation functions to perform their respective tasks [53, 54].
The key equations involved in LSTM are summarized in the following [55].

it = σ (Wxixt +Whiht−1 +Wci � ct−1 + bi) (12)

kt = σ (Wxkxt +Whkht−1 +Wck � ct−1 + bk) (13)

ct = kt � ct−1 + f (Wxcxt +Whcht−1 + bc) (14)

ot = σ (Wxoxt +Whoht−1 +Wco � ct−1 + bo) (15)

ht = ot � f(ct) (16)
Here, xt, ct and ht are the input, the memory cell and the output status of the LSTM at time t, respectively. Further,
it, ot and kt are the functional values of the input, output, and keep gates, respectively. Wxj denotes the weight matrix
between the input, xt, and the gate, jt. Note that in the denotation for matrix Wxj , x and j do not represent the shape of
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Figure 2: FE contours of (a) effective strain, (b) von Mises effective stress, and (c) Stress Triaxiality ratio (ST) after a
nominal strain of 0.15. (d) Stress-strain response as obtained from FE simulations.

the matrix, but represent the input, xt,and the gate, jt at time t . The shape of the matrix will depend on the size of the
vector xt and nodes in the gate jt. and bj represents the corresponding bias. � represents the element-wise Hadamard
product. f is the activation function for the LSTM unit. The Rectified Linear activation Unit (ReLU) (equation (17))
has been used in our LSTM model. This is given by:

f(z) = max(0, z) (17)

The training process is similar to that of a feed forward neural network, such as an Artificial Neural Network (ANN). A
Back-Propagation Through Time (BPTT) algorithm is employed here to find optimal values of all the weights. The
BPTT algorithm relies on the unrolling of the network, in which a copy is generated for each time increment, thus
allowing to use a traditional back-propagation algorithm on the unrolled network [56]. The prediction accuracy of the
model is studied in terms of the Mean Square Error (MSE), i.e.,

C =

∑n
m=1 ‖ym − ŷm‖2

n
(18)

Here, ym is the true value, ŷm is the predicted value, and n is the number of training examples. ‖‖ denotes the L2 norm
that measures the distance between two vectors. At the start of training, the weights and biases are randomly initialized
and an initial prediction is made using the model. The error function is then computed and the back-propagation
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Figure 3: Schematic of integration of the FE framework with the ML-based surrogate modeling framework via the
SEACAS library.

algorithm is used to iteratively adjust the weights and biases in each layer, i.e.,

w → w
′

= w − η∇C (19)

Here, the learning rate, η, controls the degree by which we want to change our weights after every iteration. Since the
magnitudes of the input features (strains and stresses) are expected to be orders of magnitude apart, all the data have
been normalized within the range [0, 1] in the present work. The normalized value, xni , for any training variable, xi, is
calculated as:

xni =
xi − xmin

xmax − xmin
(20)

The proposed LSTM model is schematically shown in Figure 4. The output features of interest in the present problem
are: effective strain, ε̄, von Mises effective stress, σ̄, and Stress Triaxiality ratio (ST), given as the ratio of the mean
stress over the von Mises effective stress. While, effective strain and effective stress can be correlated with plastic
deformation in the respective phases, ST provides a measure of the development of multi-axial stresses that may
contribute to eventual failure initiation. In the present context, the interfaces between the hard martensite and the soft
ferrite phases, where strain partitioning may occur, are potential sites for failure initiation. Hence, it is pertinent to be
able to predict the ST.

For each element (material point), the ε̄, σ̄ and ST are exported at nominal strain intervals of 0.01 from the FE results
using the SEACAS package. The simulation is run up to 0.15 nominal strain, thus providing us a total of 15 data sets at
0.01 nominal strain intervals. The mesh consists of 400× 400 elements, making the length of every feature and output
variable as 2, 400, 000.

3.2 Surrogate Model Implementation

The LSTM model has been implemented using Google’s Tensorflow library [57] with a Keras backend in Python [58].
LSTMs have generally shown great accuracy in predicting sequence and time series data [59, 60]. The evolution of
deformation has also been formulated as a sequence modeling problem. As mentioned earlier, we focus on predicting
three output variables in our model, namely, effective strain, ε̄, von Mises effective stress, σ̄, and Stress Triaxiality ratio,
ST. For a given strain step, t, the input vector, Xt, of size 160, 000× 3 is input to the LSTM model and used to predict
the output vector, Yt, which consists of values at the next strain step in the series Xt+1. All data were normalized
within the range of [0, 1] using equation (20). FE data from the first two strain steps (at 0 and 0.01 nominal strains) were
used as input for all LSTM models. The LSTM model is then used to predict the deformation over the remaining strain
steps (up to 0.15 nominal strain). The LSTM model, in its present implementation, is thus not a standalone surrogate
model and it requires input data from the FE model for the initial strain steps. Possible ways to circumvent this are
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Figure 4: Schematic of the proposed LSTM model.

discussed later. Finally, the microstructure data was split into 70% training, 20% testing, and 10% validation data sets
for all models.

4 Results and Discussion

Multiple microstructures have been instantiated using the algorithm described in Section 2.1. Specifically, the grain
size (dα′) and volume fraction (Vα, Vα′) of the constituent phases (ferrite, α, and martensite, α′) have been varied
parametrically. Further, 5 random microstructure instantiations are created for each set of microstructure variables.
These set of microstructure variables are listed in table 1 and have been assigned distinct microstructure numbers for
future reference. FE simulation results for these 25 microstructures serve as the ground truth for assessing the predictive
capabilities of the LSTM models.

Different measures have been used to assess the error associated with the LSTM model predictions, as compared to the
ground truth (FE results). They are briefly described in the following.
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Table 1: Microstructural attributes of the different microstructures considered in the present work in terms of the grain
sizes, d, and volume fractions, V , of the constituent phases, α and α′.

Microstructure # dα′(µm) Vα′ dα(µm) Vα

1,2,3,4,5 1.5 0.13 2.5 0.87
6,7,8,9,10 0.5 0.13 2.5 0.87
11,12,13,14,15 2.5 0.13 2.5 0.87
16,17,18,19,20 1.5 0.2 2.5 0.8
21,22,23,24,25 1.5 0.3 2.5 0.7

The coefficient of determination, R2, represents the proportion of variance that has been explained by the independent
variables in the model and is given by the following equation:

R2(y, ŷ) = 1−
∑n
m=1(ym − ŷm)2∑n
m=1(ym − ȳ)2

(21)

where, ym is the actual output (ground true value), and ŷm is the model prediction. For a model with 100% accuracy,
R2 = 1. We also use the Mean Absolute Error (MAE) as an error metric, which is given by the equation:

MAE =

∑n
m=1 |ym − ŷm|

n
(22)

We use R2 and MAE to assess the performance of the LSTM models for predicting the three output variables: effective
strain, ε̄, effective stress, σ̄, and Stress Triaxiality ratio (ST).

4.1 Model Selection

We present LSTM model results for all the microstructures with the different microstructural attributes listed in table 1.
Three models with the same architecture, but different training data sets, were trained and their predictions studied.
The input to the LSTM model was the effective strain, effective stress and stress triaxiality data obtained from the FE
model at the 1st two steps (nominal strain 0 and 0.01) and the LSTM model predicted the corresponding variables at
subsequent strain steps. We first present results of the LSTM prediction at the final strain step and then present the
model’s performance over intermediate strain steps.

While we have tried different model architectures (results not presented here), LSTM model with 8 layers and 100
neurons per layer was found to give predictions with reasonable accuracy. Hence, the same architecture has been used
in all our predictions.

Model I was trained only to microstructure #1 and the R2 and Mean Absolute Error (MAE) values associated with the
predictions of the three variables at the final strain step (nominal strain 0.15) are presented in table 2. It can be seen
that the R2 values are generally low for most microstructures, with only a few values above 0.90; R2 values closer to
1 are desirable. The predictions for microstructures 1 through 5 are somewhat better than the other microstructures
because their microstructural attributes are similar to the microstructure used for training. This also suggests that the
heterogeneous deformation traits are microstructure-dependent, in addition to being dependent on the mechanical
properties of the constituent phases. The relatively higher accuracy observed in the prediction of von Mises effective
stress, σ̄, may be attributed to a lower spread in stress values. The stresses are generally low in the soft ferrite phase
and high in the hard martensite phase, with a rather bi-modal distribution. Hence, it easier for the model to predict
the effective stress with better accuracy. This will be discussed further in terms of the R2 plots and deformation
contours in the subsequent sections. The data presented in table 2 clearly indicates prediction accuracy for the rest of the
microstructures (# 6 through 25) is not good, suggesting the inability of the model to generalize over other data sets.

Model II was trained to microstructure # 1 and # 21 and the corresponding R2 and Mean Absolute Error (MAE)
values associated with the predictions of the three variables at the final strain step are presented in table 3. As can be
seen, the prediction accuracy for microstructure # 21 through 25 has now improved, compared to Model I, due to the
inclusion of microstructure # 21 in the training data set. The model is now able to predict the change in mechanical
properties due to an increase in volume fraction of the hard phase. Physically, an increase in the volume fraction of the
hard phase leads to higher overall stresses in the microstructure, and more strain partitioning in the soft phase. The
effect of microstructural changes on the deformation characteristics have been described in detail in [46]. However,
we observe model II still shows poor accuracy in predicting the deformation in the remaining microstructures. These
results clearly indicate that by training the LSTM model to more microstructures with varying attributes, the prediction
accuracy for all 25 microstructures may be increased.
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Table 2: R2 and MAE for predictions at the last strain step for the 25 microstructures using LSTM model I, which was
trained to microstructure # 1.

Microstructure ε̄ σ̄ ST
R2 MAE R2 MAE (MPa) R2 MAE

1 0.88 0.012 0.99 31.303 0.90 0.072
2 0.85 0.012 0.98 34.025 0.92 0.052
3 0.72 0.017 0.90 51.129 0.81 0.0817
4 0.74 0.016 0.84 69.031 0.75 0.113
5 0.81 0.013 0.97 58.959 0.86 0.069
6 0.59 0.0214 0.91 62.380 0.76 0.100
7 0.81 0.0143 0.99 34.737 0.86 0.078
8 0.67 0.019 0.68 85.889 0.60 0.148
9 0.75 0.017 0.96 62.142 0.90 0.061
10 0.60 0.019 0.97 44.194 0.87 0.065
11 0.42 0.025 0.35 124.060 0.67 0.118
12 0.63 0.020 0.60 90.435 0.73 0.111
13 0.83 0.014 0.99 29.540 0.89 0.067
14 0.28 0.024 0.22 132.300 0.07 0.221
15 0.71 0.018 0.98 36.64 0.85 0.077
16 0.80 0.020 0.97 29.932 0.88 0.085
17 0.32 0.031 0.30 155.257 0.82 0.108
18 0.68 0.022 0.73 86.229 0.79 0.120
19 0.70 0.023 0.77 71.911 0.85 0.096
20 0.77 0.019 0.89 45.494 0.87 0.084
21 0.73 0.025 0.67 106.94 0.75 0.14
22 0.85 0.019 0..83 76.413 0.76 0.137
23 0.54 0.033 0.38 169.54 0.75 0.153
24 0.85 0.020 0.84 68.899 0.81 0.126
25 0.77 0.023 0.76 90.865 0.78 0.133

Based on these observations, Model III was trained to data from 5 microstructures, i.e., # 1, # 6, # 11, # 16 and #
21, to account for all the different microstructural attributes studied in the present work and their effect on the ensuing
deformation behavior. Essentially, one microstructure from each of the microstructure cases described in table 1 has
been used in the training data set. The corresponding R2 and MAE are presented for the different microstructures in
table 4. It can be seen that there is a clear increase in the prediction accuracy for all microstructures using model III.
The R2 increases and the MAE decreases as compared to model I and II. Apart from microstructure # 10 and 17, the
R2 in prediction of ε̄ is greater than 0.8, while that for σ̄ is greater than 0.95, and for ST is greater than 0.84. While
the purpose of this manuscript is only to give a proof-of-concept demonstration of the LSTM model, the prediction
accuracy may be further increased by training the LSTM model to more microstructures, perhaps two instantiations
per microstructure attribute, thus allowing the ML model to further generalize the structure-property correlations in
these dual phase microstructures. The only trade off with increasing the training data is the increase in training time.
However, once trained, the same LSTM model can be used for multiple microstructure predictions, without affecting
the prediction time. These are discussed in more detail later.

Further, we graphically present R2 values for two microstructures to which the model III has not been trained. We
choose microstructure # 14 and # 17 for this purpose. As seen in table 4, microstructure # 14 shows relatively lower
error in prediction as compared to the other untrained microstructures, while microstructure # 17 shows the relatively
higher errors. Figure 5 shows the LSTM predicted values versus FE values for all three output variables at the last
strain step for microstructure # 14, and figure 6 shows the same for microstructure # 17. It can be seen that the
spread in values of the y = x line is relatively lower for the effective strain in 5(a) as compared to 6(a). The LSTM
model under-predicts the effective strain for microstructure #17. However, there appears to be qualitative concurrence
between the LSTM predicted values and the FE values over the entire range of effective strain in both cases, even
though the R2 values are somewhat low for one case. Similar observations can be made in the prediction of stress
triaxiality ratios as well. The LSTM predicted values for effective stress appear to be in quantitative concurrence with
the FE values in both cases. As mentioned earlier, there is stress partitioning between the hard and soft phases and there
are no intermediate values for stress. Given this bi-modal distribution and a relatively low scatter in the data, the LSTM
model is able to train and predict the effective stress values with reasonable accuracy.
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Figure 5: Plot of LSTM predicted values vs FE values for (a) effective strain, (b) von Mises effective stress, (c) triaxiality
for microstructure # 14.
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Figure 6: Plot of LSTM predicted values vs FE values for (a) effective strain, (b) von Mises effective stress, (c) triaxiality
for microstructure # 17.
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Table 3: R2 and MAE for predictions at the last strain step for the 25 microstructures using LSTM model II, which was
trained to microstructure # 1 and # 21.

Microstructure ε̄ σ̄ ST
R2 MAE R2 MAE (MPa) R2 MAE

1 0.92 0.010 0.99 14.923 0.93 0.053
2 0.83 0.013 0.96 61.048 0.90 0.058
3 0.60 0.021 0.98 39.241 0.52 0.147
4 0.71 0.0176 0.96 60.185 0.42 0.179
5 0.83 0.014 0.94 77.031 0.86 0.073
6 0.52 0.025 0.86 123.281 0.64 0.11
7 0.77 0.017 0.92 96.019 0.80 0.904
8 0.71 0.020 0.91 99.270 0.53 0.144
9 0.78 0.017 0.95 74.293 0.87 0.067
10 0.65 0.019 0.91 93.678 0.83 0.073
11 0.59 0.030 0.85 100.121 0.39 0.120
12 0.67 0.020 0.92 89.124 0.46 0.156
13 0.77 0.017 0.93 88.653 0.80 0.091
14 0.28 0.021 0.49 65.094 -1.00 0.272
15 0.62 0.023 0.90 107.619 0.72 0.107
16 0.69 0.027 0.99 35.869 0.89 0.085
17 0.77 0.020 0.98 50.113 0.78 0.112
18 0.80 0.020 0.95 89.889 0.71 0.128
19 0.75 0.023 0.97 75.312 0.78 0.112
20 0.78 0.020 0.96 69.291 0.85 0.091
21 0.88 0.017 0.99 24.95 0.89 0.090
22 0.85 0.019 0.98 39.73 0.80 0.123
23 0.86 0.019 0.99 31.062 0.87 0.098
24 0.80 0.024 0.98 45.25 0.80 0.142
25 0.87 0.017 0.99 26.22 0.90 0.090

4.2 Error in Prediction at Intermediate Steps

We now present results for the LSTM model III predictions at the intermediate steps. Figure 7 shows a box plot of the
mean absolute error (MAE) values for the three output variables: (a) ε̄, (b) σ̄, and (c) ST at every time step for all the 25
microstructures. This is plotted using the MAEs for all material points and all 15 time steps for each of the three output
variables. Essentially, this comprises data from 160, 000× 15 elements for each output variable for each microstructure.

It can be seen that the MAE in prediction is relatively low for the training microstructures (microstructure # 1, 6, 11,
16, 21) for all three variables. For example, the MAE in effective stress prediction is lower than 20 MPa, whereas
the actual values of stress may reach 1800 MPa (cf. figure 2). The error in prediction of stress is lower than 80 MPa
even for the untrained microstructures. The MAE in the prediction of effective strain is lower than 0.02 for most cases,
andfor the prediction of stress triaxiality ratio is lower than 0.12. Again the actual effective strain values may go as high
as 0.45, while the stress triaxiality ratio may lie in the range -1.5 to 2.5 (cf. figure 2). Hence, the MAE in predictions is
lower than ≈ 10% for all variables for all microstructures.

Based on these results, we conclude that the ability of the LSTM model III to accurately predict the structure-property
correlations increases due to the consideration of additional cases with different microstructural attributes in the training
data set. It is worth noting that while capturing history dependence is an inherent trait of LSTM models, the model’s
ability to account for the effect of spatial heterogeneity on structure-property correlations appears remarkable as well.
The LSTM model is able to accomplish this simply by training to the data sequences across different microstructures
with varying deformation traits.

4.3 LSTM Prediction of Deformation Contours

In order to demonstrate the model’s predictive capabilities, we present the deformation contours for a microstructure to
which the model III has not been trained. We choose microstructure # 14 for this purpose. Note that model III has only
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Figure 7: Box plots of mean average error (MAE) for LSTM model III predicted values for (a) ε̄, (b) σ̄, and (c) ST
across all material points and all strain steps for the different microstructures. The different colors in the box plots are
used to denote the different microstructure attributes considered in table 1.
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Table 4: R2 and MAE for predictions at the last strain step for the 25 microstructures using LSTM model III, which
was trained to microstructure # 1, # 6, # 11, # 16 and # 21.

Microstructure ε̄ σ̄ ST
R2 MAE R2 MAE (MPa) R2 MAE

1 0.91 0.010 0.99 16.874 0.93 0.054
2 0.86 0.012 0.96 61.623 0.89 0.059
3 0.89 0.010 0.99 28.221 0.91 0.056
4 0.87 0.011 0.99 17.001 0.89 0.069
5 0.84 0.012 0.95 71.509 0.85 0.072
6 0.91 0.009 0.99 17.191 0.93 0.048
7 0.87 0.012 0.97 54.258 0.90 0.063
8 0.87 0.012 0.99 20.403 0.92 0.057
9 0.83 0.013 0.95 80.992 0.84 0.074
10 0.74 0.015 0.92 90.096 0.81 0.079
11 0.92 0.009 0.99 14.130 0.93 0.048
12 0.90 0.010 0.99 17.262 0.92 0.051
13 0.86 0.012 0.99 28.989 0.92 0.057
14 0.92 0.009 0.99 14.725 0.91 0.057
15 0.90 0.010 0.99 30.021 0.91 0.056
16 0.81 0.020 0.99 23.751 0.90 0.078
17 0.72 0.023 0.98 49.489 0.78 0.117
18 0.87 0.015 0.99 27.456 0.88 0.081
19 0.86 0.017 0.99 37.360 0.88 0.085
20 0.83 0.018 0.99 42.115 0.88 0.081
21 0.90 0.016 0.99 22.904 0.90 0.085
22 0.88 0.017 0.99 39.181 0.85 0.108
23 0.86 0.019 0.99 31.765 0.87 0.101
24 0.87 0.018 0.99 33.653 0.85 0.120
25 0.89 0.017 0.99 25.252 0.91 0.085

been trained to microstructure # 1, 6, 11, 16 and 21. Hence, the local mechanical properties for microstructure # 14
are expected to be distinct from any of the training microstructures.

Contour plots of LSTM predictions and the associated errors at the last strain step are shown in figure 8 for: (a) ε̄,
(c) σ̄, and (e) ST, respectively. The corresponding errors in prediction are shown in figure 8 (b), (d), and (f) for ε̄, σ̄,
and ST, respectively. It is clear from figure 8(a) and (b) that the LSTM model is able to predict the strain localization
trends with reasonable accuracy. For example, while the maximum value of ε̄ is 0.36, the range of associated error is
[−0.040, 0.05]. Similarly, figure 8(d) shows that the error in prediction of σ̄ is negligible. While the maximum σ̄ is of
the order of 1800 MPa, the scale for error contours lies in the range [−80, 80] MPa. The ST contour and the associated
error also demonstrates similar trends. It should also be noted that the deformation contours for this microstructure (#
14, dα′ of 2.5 (µm)) are quite distinct from that presented in figure 2 for microstructure # 1, with dα′ of 1.5 (µm).
The FE model accounts for grain size-dependent Hall-Petch hardening (cf. [46]) and hence gives lower stresses in
the hard phase for microstructure # 14. Although the strain localizations and stress hot spots appear very distinct in
these two microstructures, the LSTM model gives accurate predictions of the deformation contours in the untrained
microstructure. Generally speaking, the LSTM model III is able to predict the heterogeneous deformation contours in
an untrained microstructure with high accuracy.

We have also used the LSTM model III to predict the strain contours at intermediate strain steps. The LSTM predicted
contours of ε̄ are shown in figure 9(a) and 9(c) for 0.05 and 0.10 nominal strain, respectively, along with the associated
errors in figure 9(c) and 9(d), respectively. It can be seen from the error contours at both these nominal strains that the
associated errors are relatively low. These results indicate the LSTM model’s capability to predict the spatio-temporal
evolution of heterogeneous deformation fields in dual phase microstructures with high accuracy.

4.4 LSTM Prediction of Aggregate Properties

Finally, we have used the LSTM predicted contours to calculate the average values of σ̄ and ε̄ at each strain step.
These are then used to re-construct the ensemble-average stress-strain response. Figure 10(a) shows a comparison of

15



PREPRINT - OCTOBER 14, 2021

Figure 8: Spatial contours of LSTM model III predicted values for (a) ε̄, (c) σ̄, and (e) ST for microstructure # 14.
The corresponding error contours are plotted in (b) ε̄, (d) σ̄, and (f) ST. Note that model III has not been trained to this
microstructure.
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Figure 9: Spatial contours of LSTM model III predicted values for ε̄ at (a) 0.05 nominal strain, and (c) 0.10 nominal
strain for the untrained microstructure # 14. The corresponding error contours are plotted in (b) and (d), respectively.

the LSTM predicted stress-strain response with the ’ground truth’ FE stress-strain response. It can be seen that the
LSTM-predicted aggregate response compares very well with the FE response.

Strain partitioning is a commonly observed phenomenon in these dual phase microstructures [17]. This occurs due to
higher deformation being accommodated in the softer phase. On the other hand, the harder phase, with a relatively higher
yield stress, does not accommodate much deformation and primarily contributes to strengthening of the microstructure.
Figure 10(b) shows the comparison of the LSTM predicted and FE predicted average effective strains in the soft and the
hard phases as a function of nominal strain. It can be seen that the LSTM model is marginally under-predicting the
average strain in the both the phases as compared to the FE values, while qualitatively predicting the expected trends.
The strain partitioning effect due to the presence of a hard and soft phase in the dual phase microstructure is clearly
visible from these plots. Underlying mechanisms are discussed in more detail in the next section.

Overall, we have demonstrated the LSTM model’s capabilities of predicting the local and aggregate mechanical
properties of dual phase microstructures with varying attributes, such as constituent grain sizes and constituent volume
fractions.

4.5 Discussion

The application problem chosen in this work is the elastic-plastic deformation of a two phase microstructure. This
microstructure is representative of Dual Phase (DP) steels, comprised of the soft ferrite phase and the relatively harder
martensite phase. Since there is a large strength differential between the phases (> 1 GPa), the stress is usually
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Figure 10: (a) Comparison of re-constructed stress-strain curve from LSTM model III predictions with the FE results
for the untrained microstructure # 14. (b) Average effective strains in the soft ferrite and hard martensite phases as a
function of nominal strain as predicted using the LSTM model III and the FE model for the same microstructure.

partitioned to the hard martensite phase, while the strain is partitioned to the softer ferrite phase. This was also observed
in our simulations (cf. figure 10(b)). At the early stages of deformation, the ferrite phase starts to deform plastically due
to its lower yield strength, while the martensite still deforms elastically. At the later stages, the martensite phase also
starts to show some plastic deformation, although with limited strain hardening [61, 62] due to its complex hierarchical
structure [63, 64]. As the ferrite phase deforms plastically, accumulation of dislocation forests lead to large amounts
of strain hardening, especially in the ferrite grains lying between closely spaced martensite islands. Eventually, the
strength differential between the two phases is reduced and the strain also starts to partition to the martensite phase
[65, 66]. Severe strain localization occurs, especially at the corners of sharp martensite islands, which act as hot spots
for eventual nucleation of damage [62, 66].

It is therefore important to predict such hot spots for large microstructures using computationally efficient techniques,
such as ML-based surrogate models. Predicting the same for large dual phase microstructures, with heterogeneous
deformation characteristics, may perhaps be too computationally expensive for physics-based FE frameworks. As a
comparison, each of the FE simulations took ≈ 1440 compute hours (60 physical hours for a simulation running on 24
core Intel Xeon processors and 4 GB memory per core) to reach 0.15 nominal strain. In contrast, the LSTM model
III was trained in less than ≈ 28 compute hours (3.5 physical hours for a training running on a workstation computer
with 8 core Intel i7 processor and 2 GB memory per core). Once trained, the LSTM model III was able to predict the
deformation contours in less than 5 minutes on the workstation computer. This amounts to a speed up of ≈ 50 times
as compared to the FE simulations, including the training time (which only needs to be performed once per model).
Excluding training time, the speed up is greater than ≈ 2000 times.

However, one drawback with the present implementation of the LSTM model is that it still needs data from the FE
simulations for the first two strain steps as an input. Hence, it not possible to completely bypass the FE simulations at
the moment. In order to develop a standalone surrogate model, a hybrid ML model using a combination of ANN (for
establishing correlations between the microstructural attributes and mechanical properties) and LSTM for predicting
history-dependent deformation maybe developed. Other variants of LSTM, such as Fully Connected LSTM (FC-LSTM)
or Convolutional LSTM (ConvLSTM) [55] may also be explored for this purpose in the future. A larger data set,
comprising of multiple microstructures, may also help in reducing the errors associated with over-fitting, if any.

The LSTM model III predicts all three output variables with reasonable accuracy for trained as well untrained
microstructures. Plastic deformation being a history-dependent process, this behavior is better modeled using LSTM
networks, as they treat the data as a time series. LSTMs maintain a context over time, thus making them efficient in
time series predictive modeling problems. Pandey and Pokharel [27] used a similar approach to predict the evolution of
crystallographic orientation in polycrystalline ensembles undergoing plastic deformation. Their model also considers
data from the nearest neighbourhood to predict the orientation evolution at any material point. In comparison, our
LSTM model is much simpler and does not consider the effect of neighbors. Logarzo et al. [33] also used sequence
to sequence modeling to develop Smart Constitutive Laws (SCLs) to predict the response of any material given the
loading histories. They generate a number strain sequences which are used as inputs to predict the stress response.
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Their model establishes a relationship between the strain sequences and the corresponding stresses, thus acting as an
’effective’ constitutive law. In contrast, our approach predicts all variables independently only using their individual
histories as inputs.

5 Conclusions

We have developed a Machine Learning (ML)-based surrogate modeling framework to predict the deformation of
dual phase microstructures. Long Short Term Memory (LSTM) based ML models, trained with different data sets,
have been used to predict three output variables: effective strain, ε̄, effective stress, σ̄, and Stress Triaxiality ratio,
ST, and their prediction efficacy compared with the ground truth results. The results from a microstructure-sensitive,
J2 plasticity-based Finite Element (FE) simulations are used as the ground truth for the LSTM model training and
prediction.

• Model I, which was trained to only 1 microstructure, was unable to make predictions for the untrained
microstructures. Presumably, the model was over-fit to the training microstructure, with no ability to generalize
over other microstructures.

• As the LSTM model was trained to more number of microstructures in model II and III, it’s ability to generalize
the structure-property correlations in untrained microstructures improved significantly.

• Model III was trained to 5 different microstructures, in order to improve it’s predictive capabilities for untrained
microstructures. The model successfully predicted all three output variables for 25 distinct microstructures,
with different grain sizes, volume fractions and random instantiations, at every strain step with reasonable
accuracy.

• Model III was also able to predict the ensemble average properties, such as the stress-strain response and strain
partitioning for an untrained microstructure, with reasonable accuracy.

• The LSTM model gives a significant speed up over the FE model for prediction of deformation in dual phase
microstructures.

The application of LSTM-based ML models for predicting the spatio-temporal contours of dual phase microstructures
during elastic-plastic deformation is the novelty of our work. While Pandey and Pokharel [27] demonstrated the
same for single phase microstructures, we have demonstrated the applicability of LSTM networks for dual phase
microstructures and predicted three output variables simultaneously for several untrained microstructures.
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