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ABSTRACT

This work presents an open source, dislocation density based crystal plasticity modeling framework,
ρ-CP. A Kocks-type thermally activated flow is used for accounting for the temperature and strain
rate effects on the crystallographic shearing rate. Slip system-level mobile and immobile dislocation
densities, as well slip system-level backstress, are used as internal state variables for representing
the substructure evolution during plastic deformation. A fully implicit numerical integration scheme
is presented for the time integration of the finite deformation plasticity model. The framework
is implemented and integrated with the open source finite element solver, Multiphysics Object-
Oriented Simulation Environment (MOOSE). Example applications of the model are demonstrated
for predicting the anisotropic mechanical response of single and polycrystalline hcp magnesium,
strain rate effects and cyclic deformation of polycrystalline fcc OFHC copper, and temperature and
strain rate effects on the deformation of polycrystalline bcc tantalum. Simulations of realistic Voronoi-
tessellated microstructures as well as Electron Back Scatter Diffraction (EBSD) microstructures
are demonstrated to highlight the model’s ability to predict large deformation and misorientation
development during plastic deformation.

Keywords Crystal plasticity · open source · dislocation density ·MOOSE · EBSD · misorientation

1 Introduction

Crystal plasticity modeling frameworks have been extensively used to study the microstructure-sensitive, anisotropic,
elasto-plastic deformation of metallic systems [1, 2, 3]. Broadly speaking, these frameworks rely on the development of
material-specific constitutive models of crystallographic deformation mechanisms responsible for dislocation mediated
inelastic deformation at the grain and sub-grain level (see [4, 5, 6, 7, 8] for some representative examples). Implementa-
tion of these constitutive models in finite element frameworks allows the study of deformation in microstructures and
structures, with the broad objectives of establishing structure-property correlations and their effect on the mechanical
properties and performance. Specifically, crystal plasticity models have been used for studying texture evolution during
processing and in-service conditions [9, 10, 11, 12], the effect of various microstructural attributes, such as grain orien-
tations, inclusions and heterogeneities, on the local deformation behavior [13, 14, 15, 16, 17], orientation-dependent
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ρ-CP: Open Source Dislocation Density-based Crystal Plasticity

microscale and macroscale mechanical response [18, 19, 20] and lifing predictions [21, 22]. Note that crystal plasticity
models have also been implemented in self consistent modeling frameworks [23, 24] and Fast Fourier Transform
(FFT)-based frameworks [25, 26]. Crystal plasticity models are generally considered to be the state-of-the-art and their
use has increased significantly over the last couple of decades, leveraging the parallel implementation of finite element
solvers and the wide availability of high performance computing resources.

While the finite deformation kinematics of plasticity in crystalline solids was fairly well established in the last century
[27, 28, 29, 30], there has been significant research in last three decades on the development of constitutive equations
for representing material- and microstructure-specific mechanisms of strengthening and substructure evolution in
these frameworks. Power law based hardening models have been used extensively for representing slip system
strengthening [31, 30], perhaps due to their simplicity and ease in estimating the associated material parameters.
Physically-based models have been developed subsequently by assuming a Taylor-type hardening model due to
dislocations [32], along with constitutive models for the statistically-representative evolution of dislocations during
plastic deformation [33, 34, 35, 36, 3]. In addition, consideration of twinning as a pseudo-slip deformation mode
[23, 5] has facilitated modeling of the associated shear mechanisms in face centered cubic and hexagonal close packed
crystals, where deformation twinning is commonly observed at ambient and low temperatures, in addition to dislocation
slip. Transformation-induced plasticity has also been considered in recent studies [37, 38]. Finally, it should also be
mentioned that non-local crystal plasticity frameworks have been developed to model the effects of strain gradient
plasticity on the size-dependent mechanical properties and microstructure evolution [39, 40, 41, 42, 43, 44]. The reader
is referred to [2, 3, 45] for a detailed review of advances in the field of crystal plasticity modeling.

In recent years, there has been a concerted effort in the materials and mechanics community towards the development
of open-source computational tools, which can be widely used by researchers. In this regard, several open-source
modeling tools have been developed spanning the length and time scales of materials physics, from the atomistic scales
to the meso- and macro-scales. For example, open-source tools exist for density functional theory calculations [46],
molecular dynamics [47], discrete dislocation dynamics [48], concurrent atomistic-continuum modeling [49], phase
field [50, 51, 52], crystal plasticity modeling [53, 26, 54], and materials informatics [55]. Further, there are several
open-source finite element solvers, which can be used for solving multi-physics problems and Partial Differential
Equations (PDEs), in general [56, 57, 58, 59, 60, 61]. These tools are also complemented by several open-source pre-
and post-processing tools [62, 63, 64, 65], thus enabling a complete open-source eco-system for materials modeling.
The work presented in this manuscript also represents a contribution in the same vein.

We present a physically-based crystal plasticity constitutive modeling framework that accounts for substructure evolution
due to underlying mechanisms of dislocation strengthening, interaction and evolution during plastic deformation. The
constitutive model (or its variant) has been previously used for studying orientation-dependent deformation and residual
strain development in Zr alloys [66], process-induced residual strain development during additive manufacturing
[67], irradiation hardening and plastic flow localization in ferritic-martensitic steels [68, 69, 70], and orientation- and
temperature-dependent yield stress prediction due to non-Schmid stresses in bcc-Fe [71] and single crystal Ni-based
superalloys [72]. While these former studies were material-specific and implemented in the form of Fortran subroutines,
we present a more general C++ based implementation of the constitutive model in this work, in order to facilitate the
user to run crystal plasticity finite element simulations for the desired application, with minimum code development or
implementation. We first present the constitutive model and an algorithm for the fully implicit time step integration of
the same, along with its interface with the open-source finite element solver, Multiphysics Object-Oriented Simulation
Environment (MOOSE) [56]. The application of the model is demonstrated with several examples. First, we predict the
mechanical response of hexagonal closed packed (hcp) magnesium single and polycrystals deformed in plane strain
compression. We then demonstrate application of the model to predict the strain rate-dependent compression response
and the cyclic response of face centered cubic (fcc) copper polycrystals. We also use the model to predict the strain rate-
and temperature-dependent deformation of body centered cubic (bcc) tantalum under a variety of loading conditions.
Finally, we demonstrate the ability of the model to simulate experimentally measured Electron Back Scatter Diffraction
(EBSD) microstructures of tantalum oligocrystals and predict misorientation development during deformation.

The C++ source codes for the numerical implementation of this framework, along with the necessary input files for
running the example simulations, are shared in the github repository: https://github.com/apatra6/rhocp

2 Crystal Plasticity Framework

The crystal plasticity model is formulated in the context of finite deformation kinematics, which naturally allows the
consideration for large deformation plasticity. Physically based models for slip and twinning are used to account
for plastic deformation. These include: (a) a thermally-activated flow rule for dislocation slip, which accounts for
temperature- and rate-dependent effects on the crystallographic shearing rate, (b) dislocation density-based strengthening
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of slip systems during plastic deformation, (c) substructure evolution in terms of the slip system-level mobile and
immobile dislocation densities, and (d) physically-based evolution of the slip system-level backstress that may contribute
to intragranular directional hardening during cyclic deformation, manifested in the form of Bauschinger effect, for
example. Constitutive equations related to these individual mechanisms are presented in this Section, while their
numerical implementation is discussed in the following Sections.

2.1 Finite Deformation Kinematics

This finite deformation framework is based on the multiplicative decomposition of the deformation gradient, F , into the
elastic, F e, and plastic parts, F p [28], i.e.,

F = F e · F p (1)

where F p accounts for the plastic deformation from the reference (undeformed) configuration to an intermediate
isoclinic configuration, and F e accounts for the elastic deformation and rigid body rotation from the intermediate
configuration to the current (deformed) configuration. F p is related to the plastic part of the spatial velocity gradient,
Lp, as

Ḟ p = Lp · F p (2)

Further, Lp is given as the tensor sum of the crystallographic shearing rates over all possible slip systems, Ns, i.e.,

Lp =

Ns∑
α=1

γ̇αmα
0 ⊗ nα0 (3)

where γ̇α is the crystallographic shearing rate due to slip on slip system α, and mα
0 and nα0 are the unit vectors

along slip and slip plane normal directions in the reference configuration, respectively. γ̇α evolves as a function of the
resolved shear stress, τα, and the internal state variables. In this framework, the substructure evolution during plastic
deformation is assumed to be represented by three slip system-level internal state variables: mobile dislocation density,
ραm, immobile dislocation density, ραi , and the slip system-level backstress, χα.

Generally speaking, twinning may be an additional mode of plastic deformation for certain materials, for example, in
cubic crystals with low stacking fault energies and in low symmetry hcp crystals, where dislocation slip is not viable for
certain loading orientations. In order to account for this, the plastic spatial velocity gradient, Lp, may be modified to
have additional terms by considering twinning as a pseudo-slip deformation mode [5], i.e.,

Lp =

Ns∑
α=1

γ̇αmα
0 ⊗ nα0 +

Nt∑
β=1

γ̇βmβ
0 ⊗ n

β
0 (4)

where γ̇β is the crystallographic shearing rate due to twinning on deformation system β, Nt is the number of twinning
(pseudo-slip) systems, andmβ

0 and nβ0 are the unit vectors along pseudo-slip and pseudo-slip plane normal directions
for the corresponding twinning systems, respectively. It should be noted that the plastic (or inelastic) velocity gradient
may also be modified to account for dislocation climb associated mechanisms [73, 74].

2.2 Elastic Deformation

The elastic Green strain tensor in the intermediate configuration is given as:

Ee =
1

2
(F eT · F e − I) (5)

Further, the second Piola-Kirchhoff (PK) stress tensor is obtained using S = C0 : Ee, where C0 is the fourth rank
elastic stiffness tensor in the intermediate configuration. The Cauchy stress tensor is derived from the PK stress as:
S = det(F e)F e−1 · σ · F e−T . Finally, the resolved shear stress acting on the slip system α is estimated using the
Schmid law as:

τα = mα · σ · nα =
1

det(F e)
mα

0 · S · nα0 (6)

Here, mα and nα denote the unit vectors along the slip and slip plane normal directions in the current (deformed)
configuration, and can be related to the corresponding vectors in the reference configuration using: mα = F e ·mα

0
and nα = nα0 · F e−1.
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2.3 Kinetics of Plastic Deformation

Plastic deformation generally occurs due to dislocation glide along preferred directions on close-packed planes in
crystalline solids. This is a temperature- and rate-dependent phenomenon. The flow rule for crystallographic shearing
rate due to dislocation glide has been conventionally represented using power law, sine hyperbolic, or Arrhenius-type
thermally activated model forms. The latter representation allows a more physically-based consideration for the rate
kinetics of dislocation glide, along with thermal activation. In this regard, a Kocks-type thermally activated flow rule
[75] has been widely used in the literature. In the present work, we model the crystallographic shearing rate due to slip
using a similar model as

γ̇α =

γ̇
α
0sexp

[
−∆Fα

kbT

(
1−

(
|τα−χα|−sαa

sαt

)pα)qα]
sgn (τα − χα) ; |τα − χα| > sαa ;α ∈ slip

0; otherwise

(7)

Here, γ̇α0s represents the reference strain rate associated with dislocation glide, ∆Fα represents the activation energy for
dislocation glide in the absence of external stress, kb is the Boltzmann constant, T is the absolute temperature, and pα
and qα are parameters associated with the shape of the enthalpy curve. sαa is the non-directional athermal slip resistance
due to the long range stress fields of obstacles, such as dislocations, while sαt represents the thermal slip resistance due
to the short range obstacles, such as solute atoms, that can be overcome by thermal vibrations. The driving force for
dislocation glide on a slip system is of the form: τα − χα, where τα is the aforementioned resolved shear stress, while
χα is the slip system-level backstress representative of directional hardening. For material systems where non-Schmid
deformation is observed, additional contributions to the driving force may also be considered [71, 72]. The signum
function (represented by sgn) accounts for the direction of forward and backward slip due to positive and negative
values of τα − χα, respectively.

Twinning, when present, has generally been modeled as a pseudo-slip plastic deformation mode [5]. We consider the
same here and represent the crystallographic shearing rate due to twinning using a phenomenological power law model
as

γ̇α =

γ̇α0t
(
τα−τα0t
Dα

)mα
; τα > τα0t;α ∈ twin

0; otherwise
(8)

Here, γ̇α0t represents the reference strain rate associated with twinning, τα0t represents the threshold resistance to twinning,
Dα represents the frictional drag resistance, and mα is the rate sensitivity exponent. We note that this is a rather simple
representation of the crystallographic shearing rate due to twinning and several advanced constitutive models accounting
for the twin nucleation and growth kinetics have been proposed [76, 77, 78, 79, 80].

2.4 Strength Contributions

The athermal slip resistance, sαa , may have several contributions due to the intrinsic lattice resistance, grain size
strengthening (Hall-Petch effect), and dislocation strengthening. The additive sum of these contributions reflects in sαa
as

sαa = τα0s +
kαHP√
dg

+ kαρGb
α

√√√√ Ns∑
ξ=1

Aαξρξ (9)

where τα0s represents the intrinsic lattice resistance, kαHP represents the Hall-Petch coefficient associated with grain
size strengthening [81, 82], dg represents the grain size, kαρ represents the Taylor-type strength coefficient associated
with dislocation strengthening [32], G represents the shear modulus, bα represents the Burgers vector magnitude,
Aαξ represents the matrix of slip system-level dislocation interaction coefficients between slip systems α and ξ, and
ρξ = ρξm + ρξi is the aforementioned total dislocation density on slip system ξ.

The thermal slip resistance, sαt , may have contributions from the frictional resistance to dislocation glide, such as
that due to solid solution strengthening [83, 84], especially in alloy systems. In bcc crystals, the (high) intrinsic
Peierls-Nabarro stress [85] may also contribute to sαt . As a first order approximation, we have assumed that sαt does not
evolve with plastic deformation.

Further, we also assume that the resistance to twinning due to τα0t and Dα, when present, does not evolve during plastic
deformation. Again, we note that more advanced constitutive description of twinning, for example, twin interactions
with dislocations have been considered elsewhere [77]. The purpose of this work is to introduce a generalized
constitutive modeling framework, which can be adapted to the materials system and application by including the
necessary strengthening mechanisms.
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It should also be noted that twins are expected to reorient once a characteristic shear strain, γαtw, is reached within the
twin. The associated lattice rotation tensor,Rtw, is generally given by [86, 18]

Rtw = −I + 2ntw ⊗ ntw (10)

where I is the identity tensor and ntw is the normal to the twin plane. While this description of twin reorientation
kinematics is more physically appealing, it is generally associated with numerical convergence issues [18]. An alternate
approach was proposed [87], where the twin resistance was assumed to harden exponentially once the characteristic
shear strain is reached. Accordingly, Dα can be modified to a Voce hardening model as

Dα =

Dα
0 + hα0

((∑Nt
α=1 γ

α

γtw

)mαth
− 1

)
;
∑Nt
α=1 γ

α > γαtw

Dα
0 ; γα ≤ γαtw

(11)

Here, Dα
0 is the drag resistance prior to twin reorientation, hα0 is the hardening coefficient and mα

th is the associated
hardening exponent. We have implemented both these constitutive models for representing twin reorientation in our
framework and presented the results in later Sections.

2.5 Substructure Evolution

As mentioned earlier, the substructure evolution has been considered primarily in terms of two Internal State Variables
(ISVs), namely, mobile dislocation density, ραm, and immobile dislocation density, ραi . The slip system-level backstress,
χα, may also considered as an additional ISV for applications where simulating cyclic loading and Bauschinger effect
is of interest. The equations are adopted from previous studies [68, 71, 67, 66, 72, 74], where the application of these
substructure evolution models has been demonstrated to study thermomechanical deformation in various materials
systems.

The rates of evolution of the mobile and immobile dislocation densities are given as:

ρ̇αm =
kαM
bα

√√√√ Ns∑
ξ=1

ρξ |γ̇α| − 2Rαc
bα

ραm |γ̇α| −
kαI
bαλα

|γ̇α| (12)

ρ̇αi =
kαI
bαλα

|γ̇α| − kαDραi |γ̇α| (13)

The first term on the RHS of Equation 12 represents the multiplication of mobile dislocations at pre-existing dislocation
segments [88], while the second term represents the mutual annihilation of dislocation dipoles within a critical capture
radius, Rαc . Trapping of mobile dislocations at other dislocation segments is represented by the third term, where

λα = 1/
√∑Ns

ξ=1 ρ
ξ represents the dislocation mean free path. Consequently, these trapped dislocations are rendered

immobile, which is reflected in the first term of Equation 13, while the last term represents the annihilation of immobile
dislocations due to dynamic recovery processes. The associated material parameters, kαM , Rαc , kαI and kαD, may be
obtained by fitting the predicted stress-strain response to the experimental hardening response. We note that depending
on the materials system, cross-slip of screw dislocations may be an additional mechanism of dislocation evolution
during plastic deformation. Constitutive models for cross-slip have been developed in the past [68, 89] and can be
integrated into this framework in future work.

We have modeled the backstress evolution as a function of the dislocation density using a self-hardening relation [74],
i.e.,

χ̇α =
(
kαχ1Gb

α√ραsgn (τα − χα)− kαχ2χ
α
)
|γ̇α| (14)

This constitutive model is inspired from [90] and is in the form of a non-linear Armstrong-Frederick kinematic hardening
model [91], which considers the development of backstress along the direction of net applied shear stress (first term)
and also has a recall/recovery term (second term). kαχ1 and kαχ2 are the associated material parameters. Note that
micromechanical constitutive models for dislocation substructure evolution during cyclic loading have also been
proposed in recent studies [89, 92].

The above set of equations comprise all the constitutive equations implemented in the present framework to represent
the plastic deformation and associated microstructure evolution of crystalline systems. Depending on the materials
system or application, one or more of the above mechanisms may not be utilized.
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2.6 Numerical Integration

The constitutive equations presented in the previous Section are highly stiff, non-linear differential equations, which are
generally difficult to integrate. Accurate numerical integration is essential for implementation and interfacing with finite
element codes, which may otherwise lead to convergence issues. In this Section, we present a fully implicit numerical
algorithm for the time step integration of the crystal plasticity model. This algorithm is inspired from previous works
[93, 94, 95], where different implicit and semi-implicit approaches for integration of crystal plasticity models have been
discussed.

For a given deformation gradient, F , at any time step, the numerical integration algorithm decomposes the total
deformation gradient into the elastic and plastic parts using a Newton-Raphson algorithm that solves for the increment
of crystallographic shearing rate, ∆γ̇α. This is accomplished by formulating a function, f(γ̇α) [94, 93, 96], such that

fα = f(γ̇α) =


γ̇α − γ̇α0sexp

[
−∆Fα

kbT

(
1−

(
|τα−χα|−sαa

sαt

)pα)qα]
sgn (τα − χα) ;α ∈ slip

γ̇α − γ̇α0t
(
τα−τα0t
Dα

)mα
;α ∈ twin

(15)

The above equation is obtained by rearranging terms in the respective flow rules for slip (Equation 7) and twinning
(Equation 8). Using the chain rule of differentiation, fαi+1 can be written as:

fαi+1 = f(γ̇α)i+1 = f(γ̇α)i +

Ns+Nt∑
β=1

∂f(γ̇α)

∂γ̇β
∆γ̇β (16)

where the subscript, i, denotes the corresponding iteration number at any given time step. By iterative Newton-Raphson
method, the function, fα, needs to be minimized, i.e., fαi+1 → 0. Accordingly,

fαi = −
Ns+Nt∑
β=1

∂fα

∂γ̇β
∆γ̇β (17)

This procedure needs to be followed for all slip, Ns, and twin systems, Nt. By formulating a vector, f = [fα];α ∈
[1, (Ns + Nt)], over all possible slip and twin systems and minimizing this vector, the converged values of ∆γ̇ =
[∆γ̇α];α ∈ [1, (Ns+Nt)] can thus be simultaneously obtained at any given time step by inverting the above expression.
In the index notation, this can be written as

∆γ̇α = −
[
∂fβ

∂γ̇α

]−1

fβ ;α, β ∈ [1, (Ns +Nt)] (18)

The main challenge lies in computing the partial derivatives associated with the above expression and is described in
the following.

By differentiating Equation 15 with respect to γ̇β , we have

∂fα

∂γ̇β
=


δαβ − γ̇α

[
qα∆Fα

kbT

(
1−

(
|τα−χα|−sαa

sαt

)pα)qα−1
]
·
[
pα
(
|τα−χα|−sαa

sαt

)pα−1
]
·[

1
sαt

((
∂τα

∂γ̇β
− ∂χα

∂γ̇β

)
sgn (τα − χα)− ∂sαa

∂γ̇β

)
−
(
|τα−χα|−sαa

sα2
t

)
∂sαt
∂γ̇β

]
;α ∈ slip

δαβ − mαγ̇α

τα−τα0t
∂τα

∂γ̇β
;α ∈ twin

(19)

Further, the individual partial derivatives are given as:

∂sαa
∂γ̇β

=
kαρGb

α

2
√∑Ns

ξ=1A
αξρξ

Ns∑
ξ=1

Aαξ

(
∂ρξm
∂γ̇β

+
∂ρξi
∂γ̇β

)
;α ∈ slip (20)

The partial derivatives of the mobile and immobile dislocation density with respect to the crystallographic shearing rate
are described later. Since the thermal slip resistance is assumed to be constant, its derivative is zero, i.e.,

∂sαt
∂γ̇β

= 0;α ∈ slip (21)
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From [93], the derivative of the resolved shear stress with respect to the crystallographic shearing rate may be
approximated as:

∂τα

∂γ̇β
≈ −(mα

0 ⊗ nα0 ) : C0 : (mα
0 ⊗ n

β
0 ) (22)

Partial derivative of the slip system-level back stress with respect to the shearing rate is computed in the following steps:

∂χα

∂γ̇β
≈ ∂χ̇α

∂γ̇β
∆t =[

kαχ1Gb
α

2
√
ρα

(
∂ραm
∂γ̇β

+
∂ραi
∂γ̇β

)
sgn (τα − χα) |γ̇α|+ kαχ1Gb

α√ραδαβ − kαχ2

∂χα

∂γ̇β
|γ̇α| − kαχ2χ

αδαβsgn (γ̇α)

]
∆t;

α ∈ slip
(23)

where ∆t is the time step increment. Rearranging terms,

∂χα

∂γ̇β
=

(
kαχ1Gb

α

2
√
ρα

(
∂ραm
∂γ̇β

+
∂ραi
∂γ̇β

)
sgn (τα − χα) |γ̇α|+ kαχ1Gb

α√ραδαβ − kαχ2χ
αδαβsgn (γ̇α)

)
∆t

1 + kαχ2 |γ̇α|∆t
;α ∈ slip (24)

The partial derivatives of the mobile and immobile dislocation densities with respect to γ̇β also have to computed in
multiple steps. These are described in the following.

∂ραm
∂γ̇β

≈ ∂ρ̇αm
∂γ̇β

∆t = kαM

2b
√∑Ns

ξ=1 ρ
ξ

Ns∑
ξ=1

∂ρξ

∂γ̇β
− 2Rαc

bα
∂ραm
∂γ̇β

+
kαI

bαλα2
∂λα

∂γ̇β

 |γ̇α|∆t+

kαM
bα

√√√√ Ns∑
ξ=1

ρξ − 2Rαc
bα

ραm −
kαI
bαλα

 δαβsgn (γ̇α) ∆t

(25)

Here, the partial derivative of the dislocation mean free path is given as:

∂λα

∂γ̇β
=
∂λα

∂ραm

∂ραm
∂γ̇β

≈ −λ
α3

2

∂ραm
∂γ̇β

(26)

Using
∂ραm
∂γ̇β

=

Ns∑
ξ=1

δαξ
∂ρξm
∂γ̇β

(27)

and rearranging terms, we arrive at

∂ρξm
∂γ̇β

=

δξα − δξα kαM

2bα
√∑Ns

ξ=1 ρ
ξ
|γ̇α|∆t+ δξα

2Rαc
bα
|γ̇α|∆t+ δξα

kαI λ
α

2bα
|γ̇α|∆t

−1

·

kαM
bα

√√√√ Ns∑
ξ=1

ρξδαβ − 2Rαc
bα

ραmδ
αβ − kαI

bαλα
δαβ

 sgn (γ̇α) ∆t;α ∈ slip

(28)

Following a similar procedure, the partial derivative of immobile dislocation density with respect to the crystallographic
shearing rate is

∂ραi
∂γ̇β

=

[
kαI
bαλα δ

αβ − kαDραi δαβ
]
sgn (γ̇α) ∆t

1− kαI λ
α

2bα |γ̇α|∆t+ kαD |γ̇α|∆t
(29)

This implicit Newton-Raphson algorithm has been implemented together with a time step sub-incrementation algorithm
[93] for accelerated convergence. Further, we have used a weighted convergence criterion [93], in which the convergence
of the ith iteration is determined by a weighted residual, r, as

r =
1

Ns +Nt

√√√√Ns+Nt∑
ξ=1

|γ̇α|
γ̇max

fα2
i ≤ tolerance (30)

7
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where a user-defined tolerance can be specified depending on the imposed strain rate. The residual, r, is essentially the
root mean squared error, weighted by the ratio of the absolute crystallographic shearing rate on a given deformation
system, α, to the maximum value, γ̇max = max(|γ̇α|), α ∈ slip, twin, and summed over all slip, Ns, and twin
systems, Nt. As discussed in [93], this weighted convergence criterion may reduce the convergence time by up to an
order of magnitude, as compared to an unweighted convergence criterion. Note that terms related to twinning may be
absent in examples where pseudo-slip systems due to twinning are not needed.

The converged values of stress, crystallographic shearing rates and internal state variables are used to compute the
tangent stiffness tensor according to the following relation:

∂σ̇

∂D
=

[
C−1

0 +
∂Dp

∂σ
∆t

]−1

(31)

where ∂Dp

∂σ is given as [93]

∂Dp

∂σ
=

Ns+Nt∑
α=1

∂Dp

∂γ̇α
∂γ̇α

∂τα
∂τα

∂σ
(32)

The first and last terms on the RHS of the above equation are related to the Schmid tensor,mα ⊗ nα, while the second
term can be easily derived from the corresponding flow rules for dislocation glide and twinning.

These constitutive equations and their numerical implementation may be modified appropriately to account for additional
deformation and strengthening mechanisms within the same crystal plasticity framework, as necessary. The reader may
refer to [74] for an example application of the constitutive framework for modeling thermo-mechanical deformation in
single crystal Ni-based superalloys.

3 Code Implementation

ρ-CP is developed as an application which utilizes and interfaces with the open source finite element framework,
Multiphysics Object-Oriented Simulation Environment (MOOSE) [56], for performing finite element simulations.
MOOSE offers the ability to solve partial differential equations for multi-physics problems in massively parallel
computing environments, using several thousands of processors [56]. Moreover, MOOSE has an already existing
ecosystem for solving finite deformation mechanics problems using a Plug-n-Play system in the TensorMechanics
module [97] and applying necessary boundary conditions, as well as interfacing with other physics environments, such
as heat transfer, phase field, etc. In this regard, ρ-CP needs to be compiled alongside MOOSE to have access to the
existing MOOSE libraries.

The crystal plasticity model in ρ-CP is implemented as an inherited class of the ComputeStressBase class from the
above mentioned TensorMechanics module, which supplies an increment of the finite deformation gradient, F , and
the time step increment, ∆t, at the Gauss points of a finite element mesh. The crystal plasticity model solves for the
increment of stress and the tangent stiffness tensor corresponding to F due to the anisotropic elastic-plastic deformation,
which are then passed back to MOOSE for global convergence computations.

The algorithmic steps involved in this are shown schematically in Figure 1. Following the initialization, the crystal
plasticity solver computes the initial guess of Cauchy stress, σ, using elasticity calculations (cf. Section 2.2) and
assuming F p as the converged value of the corresponding tensor from the previous time step. The resolved shear stress,
τα, is then computed on all slip and twin systems. If |τα − χα| exceeds sαa , then the corresponding crystallographic
shearing rates are computed (similarly for twin systems). This process is repeated iteratively until a converged value of
γ̇α is obtained on all slip and twin systems. Further, time step sub-incrementation is used when the rate of convergence
is slow [93]. Based on these converged values, the stress and the tangent stiffness tensor are passed back to the FE
solver for global convergence calculations. Also note that while the numerical implementation for the dislocation mean
free path, λα, has been performed with consideration for dislocations from all slip systems, the examples presented in
Section 4 assume that this term has contributions only from the primary slip system, as a first order approximation. This
can be enabled or disabled by a parameter in the code.

Two separate classes, DDCPStressUpdate and DDCPHCPStressUpdate, have implemented these constitutive equa-
tions numerically in the ρ-CP repository. The former has implemented only the constitutive equations related to
dislocation slip and may be used for cubic crystals, with identical material parameters on all slip systems, in the absence
of twinning. In the later Sections, this DDCPStressUpdate class has been used to predict temperature- and strain
rate-dependent deformation of fcc copper and bcc tantalum. Features such as on-the-run slip system assignment, and
material properties and model parameter assignment allow reuse of the same class for materials with different crystal
structures. The DDCPHCPStressUpdate class implements constitutive equations related to both dislocation slip and
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Figure 1: Algorithmic schematic of crystal plasticity solver.

twinning. Further, it allows assignment of different material properties to different slip and twin systems, such as
prismatic, basal, pyramidal, etc. An example application has been demonstrated for hcp magnesium.

The overall class structure of the ρ-CP application is shown in Figure 2. While there is a vast library of classes already
existing in the MOOSE repository, these additional classes have been implemented for ease of data transfer between the
MOOSE and ρ-CP classes, as well as pre-processing and post-processing of information from the crystal plasticity
solver. ρ-CP also allows the user to utilize the restart features in MOOSE by saving all history-dependent variables
required by the CP solver as state variables. This prevents the need for starting from scratch those simulations that were
unintentionally terminated due to hardware or software related issues beyond the user’s control. The restart feature is
also useful in cases where the finite element solver does not converge and modification of the simulation convergence
parameters is needed mid-way through the simulations.

4 Example Applications

In this Section, we demonstrate example applications of ρ-CP to simulate the deformation behavior of magnesium,
copper and tantalum over a range of loading conditions. While the first two examples are for room temperature
deformation, the tantalum simulations are performed over a range of deformation temperatures and strain rates to
demonstrate the constitutive model’s ability to predict such effects.

4.1 Magnesium

Magnesium, with low density and high specific strength, is a structural material of interest for automotive and other
light-weighting applications [98]. However, anisotropic mechanical properties and limited ductility are known issues
associated with this material [99]. Magnesium has a hexagonal close packed crystal structure. Depending on the crystal
orientation and loading conditions, different deformation modes may be active in magnesium. In the present study, we
have considered the following allowable deformation modes for room temperature deformation: 3 basal slip systems
((0001) < 112̄0 >), 3 prismatic slip systems ({101̄0} < 112̄0 >), 6 pyramidal <a> slip systems ({101̄1} < 112̄0 >),
6 pyramidal <c+a> slip systems ({112̄2} < 112̄3 >), and 6 tensile twinning systems ({101̄2} < 1̄011 >) [18].

Channel die compression experiments, representative of plane strain compression deformation, have been previously
performed on single crystal and polycrystalline magnesium to characterize the deformation anisotropy and texture-
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Figure 2: Class structure of ρ-CP application.

dependent response [100, 101]. We have simulated deformation under representative loading and boundary conditions
to replicate these experiments. For the single crystal simulations, a cube-shaped domain having 2 hexahedral finite
elements per side (total 8 elements) was considered. Note that all the simulation results presented in this and the
following Sections have used finite elements with linear interpolation. The bottom face was constrained to move along
the y-direction, while displacement-controlled compressive loading was applied on the top face at a nominal strain rate
of 1× 10−3 /s. Further, motion along the x-direction was constrained on the lateral faces to simulate the die constraint.
Note that we have not considered any frictional effects between the deformation specimens and the channel die. The
sample is free to flow along the z-direction. These loading and boundary conditions are schematically shown in Figure
3.

Simulations have been performed for seven distinct crystal orientations, which are expected to have one primary
deformation mode active for each case. This allows us to individually calibrate the single crystal constitutive model
parameters for each deformation mode. The Euler angles (in Bunge notation) for these seven orientations are given in
Table 1. The constitutive model was first calibrated to predict the orientation with basal slip, followed by prismatic
and pyramidal <c+a> slip, respectively. Finally, model parameters related to tensile twinning were calibrated. The
anisotropic elastic constants for magnesium are given in Table 2, while the constitutive model parameters related to
room temperature plastic deformation are given in Table 3. Note that we have not used the model to predict cyclic
deformation of magnesium. Accordingly, the slip system-level backstress has been assumed to be absent for this
example. Figure 4 shows the model predictions of the stress-strain response as compared with the corresponding
experimental data [100, 87]. The deformation mode activity for these loading orientations is also shown in Figure 5.
Also note that for orientation E, we have plotted the predicted stress-strain response using both the hardening model (cf.
Equation 11) and the twin reorientation model (cf. Equation 10).

Table 1: Euler angles (in Bunge notation) for the magnesium single crystal simulations.

Orientation φ1 (◦) Φ (◦) φ2 (◦)
A 0 90 30
B 0 90 0
C 90 90 90
D 60 90 90
E 0 0 0
F 30 0 0
G 30 45 0

As can be seen, the model predictions compare reasonably well with the experimental counterparts for all orientations,
except orientation F (this is discussed later). Orientations A and B show dominant pyramidal <c+a> slip activity,
with some prismatic slip activity. Orientations C and D show primarily prismatic slip activity. Orientations E and F
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Figure 3: Schematic of loading and boundary conditions used for plane strain compression of magnesium single and
polycrystals.

Figure 4: Model predictions and comparison with the corresponding experimental stress-strain response along the
loading direction for plane strain compression of magnesium single crystals loaded in seven different orientations.
Solid lines represent model predictions, while the experimental data points are represented using open symbols. The
experimental data were obtained from [100, 87].
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Figure 5: Model predictions of deformation mode activities for hcp magnesium single crystals loaded along orientations
(a) A, (b) B, (c) C, (d) D, (e) E, (f) F, and (g) G, respectively, corresponding to the stress-strain responses shown in
Figure 4.
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show dominant tensile twinning activity prior to the point of twin reorientation, while it is dominated by prismatic
slip subsequently. Finally, orientation G shows primarily basal slip activity. Note that pyramidal <a> slip was not
observed in either case, and has not been plotted here. As mentioned earlier, predictions from both the twin hardening
and the twin reorientation models are shown Figure 4. While both these models give reasonable comparison with the
experimental data, the twin reorientation model was found to give convergence issues due to the sudden change in
crystal orientation and associated elastic stiffness during reorientation. Accordingly, only the twin hardening model
was used for the polycrystal simulations presented next. As for orientation F, it was found that some prismatic slip
activity occurs along with tensile twinning. In our rather simplified constitutive models for twinning and slip, we have
not considered any interactions between the twinning and slip systems. This could have contributed to the higher
predicted flow stress as compared to the experimental data for orientation F in the twinning regime. We have also
verified that increasing the number of elements in the simulation domain makes the macroscopic response marginally
compliant and the predicted stress at a given strain is lower by only < 2% using a larger number of elements, up to 125
elements (results not presented here). However, this is still not able to predict the experimentally observed response for
orientation F.

Table 2: Anisotropic elastic constants for hcp magnesium [18], fcc OFHC copper [102, 103] and bcc tantalum [6]. Note
that temperature effects on the elastic constants are only considered for tantalum, while the room temperature values are
presented for magnesium and OFHC copper.

Parameter Magnesium Copper Tantalum
C11 (GPa) 59.4 170.0 268.2
dC11

dT

(
GPa
K

)
- - 0.024

C12 (GPa) 25.6 124.0 159.6
dC12

dT

(
GPa
K

)
- - 0.011

C13 (GPa) 21.4 - -
dC13

dT

(
GPa
K

)
- - -

C33 (GPa) 61.6 - -
dC33

dT

(
GPa
K

)
- - -

C44 (GPa) 16.4 75.0 87.1
dC44

dT

(
GPa
K

)
- - 0.015

G (GPa) 16.4 41.5 87.1
dG
dT

(
GPa
K

)
- - 0.015

The calibrated model was used to predict the orientation-dependent response of textured polycrystalline magnesium.
For these simulations, a representative texture comprised of 512 orientations was first created synthetically such that it
qualitatively resembles that of a rolled magnesium plate [99]. This initial texture is shown in Figure 6 in terms of the
(0001), (101̄0), and (101̄1) pole figures. Essentially, there is a strong concentration of c-axis poles along the normal
(z) direction. 3D finite element simulations were performed using a 512 element mesh, such that each element was
assumed to represent one grain orientation. Boundary conditions similar to that in Figure 3 were then used to simulate
channel die compression of the rolled magnesium plate loaded along different directions. The only difference in these
simulations is that the loading and constraint directions were changed based on the texture, rather than rotating the
crystal orientations/texture (as done for the magnesium single crystals). Model predictions, as compared with the
experimental counterparts [101, 87], are shown for three different loading orientations in Figure 7. The corresponding
deformation mode activities are shown in Figure 8. In these simulations, the direction R represents the rolling (x)
direction, T represents the transverse (y) direction, and z represents the normal direction with respect to the rolled
plate. Further, the nomenclature ZT indicates that the polycrystal is loaded along the Z direction, while it is constrained
along the T direction. In this case, the polycrystal is free to expand along the third direction, R. Loading and constraint
directions for the other two loading orientations, RT and RZ, may be interpreted similarly.

It can be seen from Figure 7 that while the model predicts the response for ZT and RT cases with reasonable accuracy, a
relatively lower flow stress is predicted for the RT case as compared to the experimental data. The deformation activity
plots in Figure 8 show that pyramidal <c+a> slip is dominant for the ZT case, prismatic slip is dominant for the RT case,
while tensile twinning is dominant for the RZ case. It should also be noted that unlike the single crystal deformation
mode activity plots (cf. Figure 5), secondary deformation modes are also present for the magnesium polycrystals.
For example, some tensile twinning is observed for the RT case, in addition to prismatic slip. As discussed earlier
(cf. Section 2), we have not considered hardening on the twinning systems (except due to twin reorientation), neither
have we considered twin-slip interactions [18]. Neglect of these hardening mechanisms may have contributed to the
under-prediction of the flow stress for the RT case. Additional mechanisms may be incorporated in future work to
predict more accurately the effect of hardening due to twin-slip interactions. Nonetheless, we have demonstrated the
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Table 3: Constitutive model parameters for magnesium.

Parameter Basal Prismatic Pyramidal 〈a〉 Pyramidal 〈c+ a〉 Tensile twin
bα (nm) 0.321 0.321 0.612 0.612 -
γ̇α0s
(
s−1
)

1.0 1.0× 10−2 40 1.0× 10−3 -
∆Fα 0.11 Gb3 0.2 Gb3 1.43 Gb3 0.1 Gb3 -
pα 0.2 0.2 0.3 0.2 -
qα 1.7 1.7 1.5 1.7 -
τα0s (MPa) 2.0 21.0 50.0 38.0 -
sαt (MPa) 5.0 21.0 100.0 5.0 -
kαρ 0.35 0.535 0.35 0.35 -
Aαα, Aαζ 1.0, 0.2 1.0, 0.2 1.0, 0.2 1.0, 0.2 -
ρ0
m

(
m−2

)
1× 1010 1× 1010 1× 1010 1× 1010 -

ρ0
i

(
m−2

)
1× 1010 1× 1010 1× 1010 1× 1010 -

kαM 0.0017 1.0 1.0 3.5 -
Rαc (nm) 19.386 19.386 19.386 36.462 -
kαI 0.0015 0.98 0.8 3.4 -
kαD 0.5 180 500 350 -
γ̇α0t
(
s−1
)

- - - - 1.0× 10−3

τα0t (MPa) - - - - 2.0
Dα

0 (MPa) - - - - 10.0
mα - - - - 20
γαtw - - - - 0.1289
hα0 (MPa) - - - - 1000
mα
th - - - - 10

Figure 6: Initial texture, with 512 orientations, used for the magnesium polycrystal simulations, plotted in terms of
the (0001), (101̄0), and (101̄1) pole figures. Directions X, Y and Z correspond to the rolling, transverse and normal
directions of the rolled sheet.
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Figure 7: Model predictions and comparison with the corresponding experimental stress-strain response along the
loading direction for plane strain compression of polycrystalline hcp magnesium. Solid lines represent model predictions,
while the experimental data points are represented using open symbols. The experimental data were obtained from
[101, 87].

ability of the model to predict the orientation-dependent single crystal response of magnesium and then used the same
constitutive model parameters to predict the texture-dependent polycrystalline response.

4.2 Copper

We next use the model to predict the mechanical response of polycrystalline Oxygen-Free High Conductivity (OFHC)
copper. In this example, the primary objective is to demonstrate the model’s ability to predict strain rate-dependent
deformation as well as backstress evolution under cyclic loading at room temperature. OFHC copper has a face-centered
cubic crystal structure and 12 possible octahedral slip systems ({111} < 110 >). Further, it was assumed that twinning
systems are not active during room temperature deformation of copper.

For these simulations a pseudo-random texture, comprised of 64 orientations, was used. A cube-shaped simulation
domain, with 8 3D hexahedral elements per grain (total 512 elements), was used for these simulations. Symmetric
boundary conditions were used for these simulations. Displacements normal to each of the back faces of the cubic
domain were constrained and the corner node common to these three faces was constrained in all degrees of freedom.
Displacement-controlled loading was applied on the front face along the z-direction. This is schematically shown in
Figure 9.

The constitutive model was first fitted to predict the strain rate-dependent mechanical response under uniaxial compres-
sion. These results are shown in Figure 10, along with the comparison to the experimental data [104]. The anisotropic
elastic constants for copper are given in Table 2, while the constitutive model parameters for room temperature plastic
deformation are given in Table 4. It can be seen that the strain rate effect, over a range of four orders of magnitude,
while weak, is reasonably predicted by the model up to 0.1 applied strain. The present form of the model does not
account for strain rate (or temperature) effects on the hardening response, and primarily the initial yield stress is affected.
This could be addressed in future work by allowing the sαt term and the dislocation evolution parameters to evolve
during deformation as well (cf. Equation 7).

In order to highlight the model’s ability to predict backstress-associated hardening, we have simulated cyclic loading
according to the experiments given in [105]. Similar boundary conditions as for uniaxial compression were used, while
the displacement rate on the loading face was adjusted appropriately to simulate tensile and compressive loading. Fully
reversed compression-tension was first simulated for 20 cycles up to a strain of ±0.01, followed by 5 cycles up to a
strain of ±0.03 at a nominal strain rate of 1× 10−4 /s. The model prediction and its comparison with experimental data
is shown in Figure 11 (a). The corresponding evolution of the slip system-level backstress with nominal strain for the
different slip systems is shown in Figure 11 (b).

It can be seen that the model predicts the cyclic response with reasonable accuracy. While there is significant hardening
during the first 5-6 cycles, the hardening tends to saturate during subsequent cycles and even at the higher strain
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Figure 8: Model predictions of deformation mode activities for magnesium polycrystals loaded along orientations (a)
ZT, (b) RT, and (c) RZ, respectively, corresponding to the stress-strain responses shown in Figure 7.

Figure 9: Schematic of loading and symmetric boundary conditions used for the OFHC copper simulations.
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Figure 10: Model predictions and comparison with the corresponding experimental response for uniaxial compression
tests at different strain rates for polycrystalline fcc OFHC copper at 298 K. Solid lines represent model predictions,
while the experimental data points are represented using open symbols. The experimental data were taken from [104].

amplitude. This is evident both from the cyclic stress-strain response as well as from the backstress evolution plots.
Further, the saturated value of the slip system-level backstress is less than 5 MPa even after loading at the high strain
amplitude of 0.03. Given that the Taylor factor is expected to be of the order of 3, the overall contribution of the slip
system-level backstress to the macroscopic flow stress is expected to be less than 15 MPa (≤ 10%). Thus, isotropic
hardening due to the mobile and immobile dislocation densities is the dominant contributor to the flow stress of the
polycrystalline copper under consideration, rather than slip system-level backstress. Subsequent to the first 20 cycles,
there is some deviation from the experimental response during the elastic loading / unloading part for the higher strain
amplitude. However, note that the peak stresses at the end of the loading cycle are still comparable between simulations
and experiments.

Figure 11: (a) Model predictions and comparison with the corresponding experimental response for cyclic loading for
polycrystalline fcc OFHC copper at 298 K. Solid lines represent model predictions, while the experimental data points
are represented using open circles. The experimental data were taken from [105]. (b) Evolution of the element-averaged
slip system-level backstress during the cyclic loading simulations. The x-axis represents the nominal "axial" strain
additively summed over the loading cycles.
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Table 4: Constitutive model parameters for OFHC copper and tantalum. Note that the tantalum model was not calibrated
to any cyclic loading experiments and it was assumed that slip system-level backstress is not present.

Parameter Copper Tantalum
bα (nm) 0.256 0.286
γ̇α0s
(
s−1
)

4× 106 1.73× 107

∆Fα 0.25Gb3 0.2Gb3
pα 0.35 0.28
qα 1.3 1.38

τα0s (MPa) 0.0 24
sαt (MPa) 38 386

kαρ 0.2 0.3
Aαα, Aαζ 1, 0.1 1, 0.1
ρ0
m

(
m−2

)
5× 1011 1× 1011

ρ0
i

(
m−2

)
5× 1011 1× 1011

kαM 0.13 0.05
Rαc (nm) 1.53 1.488

kαI 0.12 0.045
kαD 40 20
kαχ1 1100 -
kαχ2 1000 -

4.3 Tantalum

The remaining examples in this manuscript are demonstrated for tantalum. Tantalum is refractory metal with superior
high temperature mechanical properties and finds use in structural applications [106]. It has a body-centered cubic
crystal structure. Based on prior studies [6, 107], we have assumed that 12 {110} < 111 > and 12 {112} < 111 > are
the available slip systems in tantalum.

4.3.1 Temperature and Strain Rate Effects

A pseudo-random texture comprised of 64 orientations was first used to predict the temperature and strain rate effects
on the yield stress. Similar to the copper simulations, a cube-shaped simulation domain with 8 3D hexahedral elements
per grain (total 512 elements) and symmetric boundary conditions was used.

The flow parameters, γ̇α0s, ∆Fα, pα and qα, and the intrinsic lattice resistances, τα0s and sαt , were first calibrated to
predict the temperature- and strain rate-dependent yield stress. For simplicity, the same parameters were assumed for
both {110} < 111 > and {112} < 111 > slip systems. Note that these parameters can be estimated with reasonable
accuracy using analytical calculations, without the need for running computationally expensive CPFE simulations.
Model predictions of the temperature-dependent yield stress at a quasi-static strain rate of 1× 10−4 /s are shown in
Figure 12 (a), while those performed for different strain rates, spanning more than 10 orders of magnitude, at 298 K are
shown in Figure 12 (b) and compared with the corresponding experimental data. The experimental data were taken
from [108]. It can be seen that the model is able to predict the temperature-dependent yield stress across the entire range
(22 K - 791 K) with reasonable accuracy, while there is some discrepancy in the prediction of the strain rate-dependent
yield stress, especially at the extremes. As will be seen next, despite this discrepancy, the flow stress predictions appear
reasonable. Before moving forward, it should be noted that we have not considered the effect of non-Schmid stresses on
the yield behavior of tantalum. Such effects may be expected to influence to be dominant on the single crystal yield
behavior [109], while we have primarily focused on the deformation behavior of polycrystalline tantalum in this study.

The model was then used to predict the flow stress under uniaxial compression at an imposed nominal strain rate of
5× 103 /s for four different temperatures. The hardening response is primarily influenced by the dislocation hardening
coefficient, kαρj , and the dislocation evolution parameters, kαM , Rαc , kαI and kαD (again assumed to be the same for
both {110} < 111 > and {112} < 111 > slip systems.). There was some trial and error involved in estimating the
dislocation evolution parameters. The fitted values of these parameters are given in Table 4. The comparison of the
predicted flow stress with the corresponding experimental data from [110, 6] up to 0.7 effective strain is shown in Figure
13. It can be seen that there is qualitative concurrence of the predicted flow stress over the entire range of deformation
for all four temperatures. These results highlight the ability of the model to predict the yield and flow stress over a
range of temperatures and strain rates for relatively large strains. In the following Sections, the constitutive model for
tantalum is used to predict different microstructure and substructure evolution characteristics.
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Figure 12: Comparison of the predicted yield stress (0.2% offset) with the experimental counterparts as a function of
(a) temperature, and (b) strain rate during tensile deformation of polycrystalline bcc tantalum. The experimental data
were taken from [108].

Figure 13: Comparison of predicted stress-strain response with the experimental counterparts during uniaxial com-
pression for different temperatures at an applied strain rate of 5× 103/s for polycrystalline bcc tantalum. Solid lines
represent model predictions, while the experimental data points are represented using open symbols. The experimental
data were taken from [110, 6].

4.3.2 Texture and Substructure Evolution

We have used the constitutive model to predict the texture evolution of tantalum during compressive loading. For these
simulations, an initial random texture comprised of 512 orientations was used. The undeformed texture is shown in
Figure 14 in terms of the (200), (110) and (111) pole figures. A cube-shaped simulation domain was meshed with 8
3D hexahedral finite elements per grain (total 4096 elements). Symmetric boundary conditions were applied as in the
previous Sections. The simulation domain was subjected to uniaxial compression along the y-direction at a nominal
strain rate of 5× 103 /s up to 0.7 applied strain at 298 K. The texture evolution is plotted in terms of the (200), (110)
and (111) pole figures after an applied strain of 0.35 and 0.7 in Figure 14. It can be seen from these pole figures
that while the undeformed texture is relatively random, with no observable pole intensities, some texture components
start developing with applied strain. This texture evolution is qualitatively similar to the experimental texture given in
[6, 111], with the development of stronger <001> and <111> texture components, as compared to the <110> component.

The slip system-averaged mobile and immobile dislocation densities as a function of effective strain from the same
simulation are plotted in Figure 15. Note that the dislocation densities are plotted on the log scale. The initial dislocation
density used in these simulations was representative of an annealed material. While there is a rapid increase in
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Figure 14: Initial and deformed (200), (110) and (111) pole figures of tantalum polycrystals, with 512 orientations,
subjected to uniaxial compression at an applied strain rate of 5× 103/s at 298 K.
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the dislocation densities during the initial stages, up to about 0.3 effective strain, the dislocation densities saturate
subsequently. This correlates with the hardening response seen for tantalum in Figure 13. It can also be seen that the
average immobile dislocation density is ≈ 5-10 times higher than the average mobile dislocation density at any stage.
This prediction is in qualitative concurrence with prior studies [112], where the immobile dislocation density dominates
during the later stages of deformation. In our constitutive model, the dislocation multiplication parameter, kαM , the
dislocation immobilization parameter, kαI and the dynamic recovery parameter, kαD, may be altered to obtain the desired
ratio of mobile and immobile dislocation densities.

Figure 15: Evolution of slip system-averaged mobile and immobile dislocation densities as a function of applied strain
for tantalum polycrystals subjected to uniaxial compression at an applied strain rate of 5× 103/s at 298 K.

4.3.3 3D Simulations of Realistic Microstructures

While all the simulations in the previous Sections were performed using idealized cube-shaped grains, we demonstrate
results with realistic 3D microstructures in this Section. For this, a synthetic microstructure was instantiated using an
in-house Voronoi tessellation code. The cubic domain of 15 µm side was meshed with 3D hexahedral elements having
an element size of 1 µm, with 22 grains. The simulation domain had a total of 3375 elements, 4096 nodes and 12288
degrees of freedom. The grain structure of the undeformed microstructure is shown in Figure 17. As earlier, symmetric
boundary conditions were used and displacement-controlled tensile loading was applied at a nominal strain rate of
1× 10−3 /s at 114 K.

We first present the parallel scaling results for the simulations loaded till 0.02 nominal strain. For this, the same
simulation was run on parallel processors ranging from 80 processors to 400 processors on the Param Sanganak
supercomputer at IIT Kanpur, with Intel Xeon Platinum 8268 processors having 2.9 GHz clock speed and 4 GB memory
per processor. The simulations were run using the implicit Newton solver in MOOSE, which we have generally found
to provide the best convergence. The simulation time required for these simulations to reached 0.02 nominal strain is
presented in Figure 16. A good parallel scaling is obtained up to 240 processors, after which the performance starts to
saturate. Increasing the problem size might demonstrate better scaling with even higher number of processors. These
parallel scaling capabilities are due to the inherent MOOSE architecture, and has been demonstrated to scale very
well up to thousands of processors using a Jacobian-free Newton-Krylov (JFNK) solver [56]. However, the Newton
solver has generally been found to provide better convergence in our simulations. In cases, where the memory load per
processor is too heavy using the Newton solver, an explicit solver may be used for ρ-CP simulations.

Figure 17 presents contours of the effective plastic strain, ε̄p, effective stress, σ̄, slip system-averaged mobile dislocation
density, ρ̄m, and immobile dislocation density, ρ̄i, at different stages of tensile deformation for the same simulation
loaded in tension up to 0.70 applied strain. It can be seen from these contours that heterogeneous deformation takes place
between the grains to accommodate the imposed deformation. For example, very high strain localization (ε̄p = 2.3) is
observed near the bottom face at an applied strain of 0.7, while other regions have ε̄p as low as 0.3. Similar heterogeneity
is also observed in the stress contours, especially in the regions near the grain interfaces. The mobile and immobile
dislocation densities being a function of plastic strain, are generally high in the regions where the plastic strain is
localized. It is also observed that the dislocation densities are high in the vicinity of grain interfaces, for example
near the top left corner of the simulation domain. The shape of the deformed domain is also indicative of geometric
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Figure 16: Simulation wall time as a function of the number of parallel processors for tensile deformation of a
polycrystalline tantalum specimen, with 3,375 elements, 4,096 nodes and 12,288 degrees of freedom, loaded up to 0.02
nominal strain using a strain rate of 10−3 /s at 114 K.

localization due to necking. Overall, these results demonstrate the model’s capability of predicting heterogeneous
deformation in realistic microstructures.

Figure 17: Contours of effective plastic strain, ε̄p, effective stress, σ̄, slip system-averaged mobile dislocation density,
ρ̄m, and slip system-averaged immobile dislocation density, ρ̄i, at different applied strains during tensile deformation of
a polycrystalline tantalum specimen. The initial grain structure was instantiated using a Voronoi tessellation algorithm
in a cubic domain of side 15 µm. The tensile specimen was loaded using a strain rate of 10−3 /s at 114 K.

22



ρ-CP: Open Source Dislocation Density-based Crystal Plasticity

4.3.4 Simulation of EBSD Microstructure

In this last example, we demonstrate the simulation of a tantalum oligocrystal microstructure obtained from Electron
Back Scatter Diffraction (EBSD). For this simulation, we have digitized the EBSD microstructure of tantalum oligocrys-
tals given in [113]. The microstructure, with dimensions of 5280× 1350µm, was mesh using 3D hexahedral elements
having an element size of 15 µm. In this example simulation, only one layer of elements was considered into the
plane, although it has been shown that considering more layers may increase the prediction accuracy [19, 113]. The
Euler angles for the individual grains were taken directly from [113] and assigned to the digitized microstructure. The
Inverse Pole Figure (IPF) map of the undeformed microstructure is shown in Figure 19 (a). The simulation domain
had 32,123 elements, 65,136 nodes and 195,408 degrees of freedom. The back face of the simulation domain was
constrained to move along direction z (into the plane), while the right face was constrained to move in directions x and
y. Displacement-controlled tensile loading was applied on the left face along direction y at a nominal strain rate of
1 × 10−3 /s up to 0.10 applied strain at 298 K. We note that the constitutive model for tantalum was calibrated to a
different experimental response [108, 110, 6], while we are using the same here for predicting the deformation of this
EBSD microstructure from [113]. This might indeed lead to some discrepancy in prediction, although the qualitative
trends are expected to be similar.

Figure 18: Contours of εyy , εxx, εxy , effective plastic strain, ε̄p, and effective stress, σ̄, at 0.05 and 0.10 applied strains
during tensile deformation of an EBSD microstructure of tantalum oligocrystals. The tensile specimen was loaded
uniaxially along the direction y using a strain rate of 10−3 /s at 298 K. The initial EBSD microstructure was obtained
by digitizing the microstructure and using the Euler angles given in [113].
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Figure 18 shows deformed contours of εyy, εxx, εxy, effective plastic strain, ε̄p, and effective stress, σ̄, at 0.05 and
0.10 applied strain. The predicted deformed shape of the gauge region is qualitatively similar to the experimental
observations in [113]. For example, there is a "neck" formation near the center of the gauge region. Moreover, similar
to the experimental Digital Image Correlation (DIC) strain measurements [113], the grain marked G1 was found to
have the highest strain among all grains in the gauge. The experiments also showed strain localization at the boundary
between grains marked G1 and G2 [113], as is predicted here in the same regions (see εxx and εxy contours). The ε̄p
contours show similar trends, while a high stress localization is generally observed at most grain interfaces in the σ̄
contours. This is also discussed in terms of the misorientation development next.

The Euler angles of the deformed microstructure were used to plot the IPF map and the Kernel Average Misorientation
(KAM) contours after 0.10 applied strain in Figures 19 (b) and (c), respectively. KAM, which is a local point-to-point
misorientation measure, is generally attributed to the accommodation of heterogeneous deformation in regions with
incompatible interfaces [44]. As can be seen from the KAM contours, high misorientation is predicted at the same grain
interface, where strain localizations were observed in our model predictions (Figure 18) and also in the experiments
[113]. This is highlighted using the white elliptical marker between grains G1 and G2 in Figure 19. Further note that
all the boundaries / interfaces of the grain G2 show relatively higher misorientation development as compared to the
other regions of the microstructure. This could be due to its location near the center of the gauge and also due to its
intergranular heterogeneity with the neighboring grains. Failure in this tensile specimen may be expected to initiate at
one of these interfaces. On the other hand, the IPF map does not show any significant evidence of grain rotation. This is
expected given the relative grain sizes and the small strains applied.

Overall, we have demonstrated the model’s ability to qualitatively predict the strain localization in an EBSD microstruc-
ture of tantalum oligocrystals. Although, we did not have the exact EBSD microstructure and considered only one layer
of elements along the depth (neglecting any sub-surface grain effects), our model predicts the deformation contours
with reasonable accuracy, including the regions of strain localization.

5 Summary

We have presented an open source, dislocation density based finite deformation crystal plasticity modeling framework, ρ-
CP. The crystal plasticity model uses a Kocks-type thermally activated flow rule for modeling the temperature- and strain
rate-effects on the crystallographic shearing rate. Mobile and immobile dislocation densities, as well as slip system-level
backstress are used as internal state variables to represent the substructure evolution during plastic deformation. Further,
twinning in hcp crystals has also been modeled. The framework relies on the fully implicit numerical integration of
the crystal plasticity model and provides the updated stress and tangent stiffness tensor that can be passed to the finite
element solver. ρ-CP has been integrated with the open source finite element framework, MOOSE, for performing
crystal plasticity finite element (CPFE) simulations of deformation in metallic systems. Example applications have been
demonstrated for predicting the anisotropic mechanical response of hcp magnesium single and polycrystals, strain rate
effects and slip system-level backstress induced hardening during cyclic loading in polycrystalline fcc OFHC copper,
and temperature- and strain rate-effects on the deformation of polycrystalline bcc tantalum. The model has also been
used to run CPFE simulations on realistic microstructures including EBSD microstructures of tantalum oligocrystals to
predict the misorientation development during tensile deformation. Overall, we have demonstrated the model’s ability
to predict both macroscopic mechanical properties as well as local microstructure evolution.

The framework presented here is general enough to allow consideration for material- and microstructure-specific
strengthening mechanisms for various metallic systems. Further, on-the-run deformation mode and material property
assignment allow the user to run simulations for different metals and alloys, with minimum code development or
implementation. Integration of ρ-CP with MOOSE allows leveraging features, such as parallelization on hundreds
of processors, multi-physics coupling, as well as restarting terminated simulations, which are inherently part of the
MOOSE architecture.

ρ-CP can serve as a tool for both new users as well as experienced crystal plasticity developers for simulating
deformation in polycrystalline ensembles.

The C++ source codes and input files for the example simulations are shared in the github repository:
https://github.com/apatra6/rhocp
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Figure 19: Inverse Pole Figure (IPF) map of (a) undeformed microstructure, (b) deformed microstructure, and (c)
Kernel Average Misorientation (KAM) contour of the deformed microstructure of the tantalum oligocrystals after 0.10
applied strain using a strain rate of 10−3 /s at 298 K. Note that these quantities have been plotted on the undeformed
mesh. Euler angles for the undeformed microstructure were obtained from [113].
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Appendix: List of examples in the ρ-CP repository

Table 5: Details of example simulations in the ρ-CP repository.

Name Results Path
Mg single crystal plane strain compression Figures 4 and 5 examples/magnesium/SX
Mg polycrystal plane strain compression Figures 7 and 8 examples/magnesium/PX

OFHC Cu strain rate effect Figure 10 examples/copper/strain_rate_effect
OFHC Cu cyclic deformation Figure 11 examples/copper/cyclic_test

Ta yield stress temperature effect Figure 12(a) examples/tantalum/temperature_effect
Ta yield stress strain rate effect Figure 12(b) examples/tantalum/strain_rate_effect

Ta uniaxial compression (64 grains) Figure 13 examples/tantalum/temperature_effect/compression_64
Ta uniaxial compression (512 grains) Figures 14 and 15 examples/tantalum/temperature_effect/compression_512

Ta uniaxial tension Figure 17 examples/tantalum/3d_pxtal
Ta EBSD simulation Figures 18 and 19 examples/tantalum/EBSD_simulation
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